Scanline-Order Image Warping using Error-Controlled

Adaptive Piecewise Polynomial Approximation
Ken Turkowski, Apple Computer, Inc.
turk@apple.com

8 Jan. 2002, rev. 1 Apr. 2002

Abstract

A general class of real-time image-warping algorithms is based upon adaptively approximating the warping function
on each scanline with piecewise polynomials, and rendering each piece by forward differencing, to yield a 3-10X
improvement in speed over traditional techniques. The error is strictly bounded by controlling the interval length as a

function of the derivatives of the warping function.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation —
Approximation of Surfaces and Contours —Spline and Piecewise Polynomial Approximation; 1.3.3 [Computer
Graphics]: Picture/Image Generation —Display Algorithms; 1.4.1 [Image Processing and Computer Vision]:

Enhancement — Geometric Correction.

Additional Keywords: image processing, image-based rendering, morphing, numerical analysis, rendering, texture

mapping.

1 Introduction

Image-based-rendering depends on the ability to interactively
warp a set of images according to changes in viewing and other
parameters. Examples of these are Morphing [Beier92],
QuickTime VR [Chen95b], Plenoptic Rendering [McMillan95],
Talisman [Torberg96], View Morphing [Seitz96], Light Fields
[Levoy96], the Lumigraph [Gortler96], Tour Into the Picture
[Horry97], Concentric Mosaics [Shum99], and Relief Texture
Mapping [Oliveira00]. It is these types of applications that are
targeted for order-of-magnitude rendering acceleration by taking
advantage of improved algorithms on modern computer
architectures.

The fastest rendering algorithms tend to be those based on
incremental scan-conversion, because they take advantage of the
coherency of the computation of a continuous function between
pixels by updating the value of a complex function from the
adjacent pixel by using a simple computation. The algorithm in
this paper yields such a fast scan-conversion, yet does so with
explicit control over the error. This has yielded a significant
increase in rendering speed for interactive viewing of cylindrical,
spherical, and cubic environment maps from a central viewpoint in
QuickTime VR, its precision has allowed the composition of
different media elements (panoramas, video sprites, 3D)
maintaining the precise registration required to maintain a feeling
of immersion.

2 Background: Incremental Scan-
Conversion
The essence of rendering computer graphics by scan-conversion is

the efficient evaluation of a vector-valued function at regularly
spaced intervals along a curve in N-space.

With Gouraud-shaded, Z-buffered polygons [Foley90], the
values of r, g, b, and z are evaluated at unit intervals in x. These
can be efficiently evaluated by using linear forward differencing,

e‘g[r g b fxtl)=[r g b D)+[n g & z|4)

Note that we use parentheses above to indicate the arguments
to a vector valued function, where the vector components are

enclosed within brackets. Since the colors vary slowly in the
Gouraud approximation to the shading equation, it suffices to use
a constant delta vector without apparent rendering artifacts.

When texture mapping, however, the colors vary at a much
higher rate than with Gouraud shading, so the perspective
correction is important [Wolberg90]. In the incremental equation,

[zz V](}(+1)=[Zl V](I)+[le VX](X),
the first partial difference is not constant, although if planar

polygons are being texture-mapped, it is constant when
represented in homogeneous space:

[ZIW vw w](x+1)=[uw vw I/V](,t”)+[(lll/1/)/Y (VW)): W,r]

When curved surfaces are being texture-mapped (or when
nonlinear, non-projective texture-mapping is used on planar
polygons), then we cannot use this trick. However, we can use
higher-order interpolation, such as that represented by the cubic
forward differencing equation

[” ”x ”n’ ”Lm' 4 Vx V,m' V.r,m':l(x +1):
0w, wy g v v, vy v+ 1)

[”x Uy Uy 0 Ve Ve Vi 0](X)

This sort of computation is particularly attractive on modern
processors, which have SIMD vector instructions capable of
performing the above operation in two or four instructions.

There are two things necessary to implement image warping
using polynomial forward differencing as embodied in eq. (2.1):

(1) Computation of the forward differencing coefficients
U= U(f(9)7 X Vs /V)

(2) Determination of the valid interval length, given an
accuracy &

R

We address both of these in this paper. These are both
computed quickly at run-time, though a significant amount of time
may be needed at design time.

Turkowski / Image Warping

3 Relation to Prior Work

Catmull and Smith [Catmull80] develop a 2-pass technique, where
the image warping function is decomposed into two one-
dimensional transformations. Each horizontal scanline from the
source image is warped independently of the other scanlines and
written to an intermediate buffer. Then each vertical scanline from
the intermediate buffer is warped independently and written to the
destination buffer. Sometimes it is better or even necessary to do
the vertical pass first, depending on the nature of the
transformation. The authors illustrate the 2-pass technique with
image rotation, image viewed in perspective, and texture-mapped
bilinear and biquadratic patches. Incremental forward-differencing
techniques can be used in each of the passes, though the authors
do not mention this. The authors mention two problems: (1) the
bottleneck problem resulting from a down-scaling in one pass

followed by up-scaling in the next, resulting in loss of resolution;
(2) and foldover, when the inverse of one of the mapping
functions is multi-valued.

Paeth [Paeth86] developed a three-pass technique for image
rotations. Unlike the Catmull-Smith technique, this algorithm
avoids scaling, but does so at the expense of requiring two
intermediate buffers for three passes. Each pass (horizontal,
vertical, then horizontal) implements a shear transformation, and
the innermost loop is simply a subpixel translation of a one-
dimensional array of pixels. This technique was independently
reported by Tanaka [Tanaka86].

Chen and Miller [Chen95a] describe a two-pass algorithm to
interactively view cylindrical environment maps as specified by a
projective camera. In one pass, an arctangent warp is performed on
each horizontal scanline with the use of a lookup table, and in the
other pass, each vertical scanline is scaled.

Wolberg and Boult [Wolberg89] generalize the Catmull-Smith
technique by using large tables to store the warping function, and
provide heuristics to deal with the bottleneck and foldover
problems, by utilizing extra memory. The bottleneck problem is
dealt with by performing both an H-V, and a V-H process and then
picking the best result.

Wolberg [Wolberg90] describes the use of polynomial forward
differencing on each scanline to accelerate rendering, but does so
without taking error tolerance into account when subdividing. As
such, it seems to be a mere curiosity, without much of a practical
application.

There are several reasons why the above methods are
unsuitable for our intended applications.

Inefficient Use of Modern Computer and Memory
Architectures

These algorithms were developed in an era when processor and
memory cycle times were approximately equal, or at least of the
same order of magnitude. Modern processors, with vector and
superscalar architectures running with gigahertz clocks, have a
much different ratio of memory to processor cycle times.
Processor speeds have increased much faster than memory speeds,
yielding a disparity of 1-2 orders of magnitude. In 2001, the ratio
is between 40:1 and 100:1 [Moshovos01]. It is expected that this
speed disparity will only get worse, and is expected to approach
1000:1 in a few years [PattO1].

Even though memory speeds have not kept up with processor
speeds, memory architectures have advanced to partially
compensate for this disparity. Unfortunately, the common
multilevel caches only really help when accessing memory
sequentially. There have been some specialized cache preload
instructions introduced into modern processors, but they are

difficult to use because they require pipeline programming (with
prime, pump and possibly flush code segments), that increases
code size and makes maintenance more difficult.

Regardless, the disparity in processor versus memory speeds
imposes a severe penalty on algorithms that make use of
incoherent memory access, requiring that we abandon the
conventional wisdom that table lookups are fast (unless the tables
are small and accessed frequently). It is advantageous to eliminate
the use of a table if its values can be easily computed, thus freeing
the cache for other things.

The Catmull-Smith, Paeth, Chen, and Wolberg89 algorithms
are separable, requiring two or three passes. At least one of these
passes is in the vertical direction, which is virtually guaranteed to
not reside in the cache, thus stalling the processor for 100 cycles
or so on every access. Even the horizontal pass, with coherent
access, stalls when accessing a new cache line. Although this cost
is amortized over all the memory in that cache line, it is still
significant and will become even more so, e.g. if the 8 words in a
cache line are accessed sequentially, their access take 12 cycles on
the average if it takes 100 cycles to fill a cache line, and 125
cycles if it takes 1000 cycles to fill a cache line.

On modern computer architectures, then, it is preferable to
perform the transformations in a single pass, thus avoiding the
memory access penalty associated with multi-pass algorithms.
Also, it is preferable to compute functions on the fly, rather than
taking cache faults due to table lookup.

Constantly Varying Parameters | nvokes a Significant
Initialization Phase

The Wolberg89 algorithm makes use of large tables for computing
the warping function, so is heavily penalized by memory access.
Also, it requires a significant startup phase, in order to initialize
the two large mapping tables. Typically, the time required for this
initialization phase is at least an order of magnitude more than the
time taken in the subsequent image-warping phase. If the warping
parameters change in every frame, then it is a waste of time to
construct the mapping table at all, and the Wolberg algorithm is
less efficient than the na ve direct computation method. The Chen
algorithm also has a startup phase, but its 1D tables are initialized
quickly.

Loose Error Control

[Wolberg90] is the algorithm that comes closest to the techniques
that we use, but it provides no quantifiable error control. In the
two-pass algorithms, it is difficult to perform a numerical analysis,
and it is expected that errors on the order of a pixel are not
uncommon.

Our Algorithm

Our algorithm improves on the prior art in that it requires no
initialization of lookup tables, it is single pass, the warping
function is computed on the fly without the use of tables, it can
achieve any specified error tolerance (we use 1/10 of a pixel), it
has no bottleneck problem, and it naturally produces subpixel
accuracy sufficient for interpolation. It only deals with surjective
(i.e. onto) functions, though, so foldover needs to be resolved by
splitting the warping function into multiple surjective domains
(e.g. at silhouettes), resolving self-occlusion by the painter s
algorithm [Foley90].

4 Problem Definition

The generalized problem investigated by this paper is as follows:

We would like to efficiently evaluate a nonlinear multivariate
function repetitively at regularly spaced intervals along a curve in
the domain. The function is assumed to be relatively complex,
involving divisions and transcendental functions. Rather than

Turkowski / Image Warping

invoking a complex evaluation at each point, we would like to do
complex functional evaluations at only a few points, and use
efficient computations such as polynomial evaluations in between.
In particular, we would like to use polynomial forward
differencing.

If the function were univariate, it would be possible to run a
nonlinear optimization offline to produce a set of Chebyshev (L.,
optimum) polynomials [Ralston78] and subintervals that span the
domain, approximating the function within a given error tolerance.
This is the technique used in scientific and mathematical libraries.

However, since the function is multivariate, and not a tensor
product function in general, then we cannot compute Chebyshev
polynomials ahead of time. However, we can reduce the
multivariate function to a univariate parametric one by restricting
the domain to a parametric curve, e.g.

#w) = /() (7).

where /(,) is a bivariate function, and (xp(f), yp(t)) is a vector

function of the free variable ¢, and fixed parameter vector p. The
function g(t; p) is univariate in ¢, with parameters p. An example

of such a function is sin(wf), which can be considered a bivariate
function in @ and ¢, or a univariate function of # with parameter @.

The primary focus of this paper is the scan-conversion of a
nonlinear deformation (warp) of a 2-dimensional image, as
embodied by the bivariate vector function

L/:[/(x,y) V=I/(x,y).

At a fixed value of y, we wish to evaluate both functions at
regularly spaced points on an interval in x. The x-interval will be
different, in general, from one scanline (i.e. fixed value of y) to the
next.

The structure of a computer graphics scan-conversion
algorithm takes the form of a very efficient inner loop surrounded
by one or more outer loops. The canonical scan conversion loop in
C looks like:

for (y = top; y <= bottom; y++) {
left = CalculateLeft(y);
right = CalculateRight(y);
dx = right - left + 1;
for (x = left; dx--; x++) {
u = CalculateU(x, y);
v = CalculateV(x, y);
dstPixel [y] [x] = GetSrcPixel (u, v);

}

/* Y loop */

/* X loop */

}

In this paper, we introduce another loop between the x and y loops,
to loop between subintervals.
for (y = top; y <= bottom; y++) { /* Y loop */

left = CalculateLeft(y);
right = CalculateRight(y);
width = right - left + 1;

for (x = left; width != 0;) { /* Interval loop */
dx = CalculateInterval(x, y); /* error control*/
SetupInterval (x, y, dx); /* poly coeffs */
if (dx > width) dx = width;
width -= dx;
for (; dx--; x++) { /* X loop */
u CalculateUOnInterval(x, y); /* fwd diff */
v CalculateVOnInterval(x, y); /* fwd diff */
dstPixel [y] [x] = GetSrcPixel (u, v);

}
}

where CalculateUOnInterval (), CalculatevVOnInterval ()
are very simple evaluation functions evaluated at every pixel, and
CalculateInterval () and SetupInterval () have the same

order of complexity as CalculateU() and CalculateV (), but
are computed only once an interval.

Polynomials can be very efficient to evaluate at regular
intervals by using forward differencing, as indicated by the
following code for a cubic polynomial:

while(i--) { Do(u); u += du; du += ddu; ddu += dddu; }

There are, however, numerical accuracy problems with the
higher order differences, so it is necessary to do a thorough
numerical analysis to determine the accuracy needed in the
computations. The required accuracy is a function of the
maximum interval length.

Here is the problem, then: determine the set of subintervals and
polynomial coefficients to approximate an arbitrary function /()

over an interval /, with tolerance &

max ©

5 Functional Approximation with
Polynomials

We take a computationally efficient approach to functional

approximation, though it does not produce an optimum

approximant under any measure: evaluate the function at regularly

spaced subintervals between the endpoints of the interval, and

produce the polynomial that interpolates those points. This has the

form of :
A7)
T, :
A)
with the appropriate matrix T, produced with Mathematica
[Wolfram88] and given in Table 1.

5.1

The endpoints are always interpolated. For linear
approximation, only the endpoints (0, 1) need to be evaluated. For
quadratic interpolation, it is necessary to also evaluate the function
at the midpoint (0, 1/2, 1). For cubic interpolation, the 1/3 and 2/3
points are needed, while for quartic interpolation, the 1/4/, 1/2, and
3/4 points are needed, as well as the endpoints.

6 Forward Differencing

Conversion from the power basis (given above) to the forward
difference basis is accomplished with the appropriate matrix D,
from Table 1 as indicated in eq. 6.1.

A

=D,T,

£ A4)
7 Maximum Error of Approximation
The maximum approximation error, €,, takes the general form
j4”+0(li)
A (7.1)
X,

7

(6.1

e,(a)=

where n is the degree of the interpolation, K, is an degree-specific
constant, A = A— Z is the interval length, and xZ € [L, 1?] is the
value of x at which the derivative attains its maximum value in the

interval. The constants K, are given in Table 1 for four degrees of
approximation.

These expressions were not derived from the Taylor series, but
by subtracting the approximation from the function and evaluating

Turkowski / Image Warping

n | Coeff. Forward Difference Matrix Interpolation Matrix between the evaluations:
K, D, T, N= \‘AJ’
o
1 8 10 1
0 o 1 where LJ is the floor function. The right end of
the interval is related to the left by
2 128 1 0 02 1 0 R=Z+NS.
0 o «a 5 34 -l Solving the error expressions above for A and
0 0 2« 2 2 then using that to find N, we arrive at
3 10368 1 0 0 0 1 0 0
5 0 a o o =55 9 45 1 (8.1)
0 0 22° 6c 9 -225 -4.5
00 0 6’ 45 135 -135 45
where the constants K, are given in Table 1. Here,
4| 262144 1 0 0 0 0 3 0 0 0 h licitl ” /(n)() ¢
we have explicitly written max x)| to
7 0@ o o o || |25 48 36 16 -3 pHetly a
0 0 20° 6a° l40* 3 70 —208 228 -112 22 indicate that the maximum value of the derivative
00 0 6c 36a _80 288 -384 224 —48 over the interval is to be used.
00 0 0 240 32 -128 192 -128 32 9 Evaluating the Derivative

over an Interval

Table 1. Coefficients, Forward Difference and Interpolation Matrices for

egs. (5.1), (6.1), (7.1) and (8.1), where x=1/N.

it midway between the interpolating points of the approximation.
The expressions derived thusly take the same form as that from the
Taylor series, but the constants are different lar ger in general,
so they provide a more conservative bound, though ill-behaved
functions can still exceed this bound (because they achieve their
maximum at another point), so we might call this the near-
maximum error.

In general, we do not know where the point x' is, unless we
know something about the nature of the derivative. We do know,
however, that the derivative has wild fluctuations, so we will
typically regularize the derivative, remove singularities, and
approximate it with a smooth, computationally efficient bounding
function. If the domain is then split into monotonic partitions, then
the maximum value of the derivative bounding function is attained
at either end of the interval, or at the boundary between domain
partitions.

In the warping functions we have investigated for rendering
environment maps, two classes of functions have emerged:

(1) the bounding function is monotonic everywhere, and

(2) the bounding function attains a maximum at x=0, and is
monotonically decreasing from there.

Both of these have been easy to deal with. More complex
functions, especially those that are functions of more than two
variables, may be difficult to characterize.

In a partition where the bounding function is monotonically
decreasing, the maximum value is attained at the left end of the
interval. When it is monotonically increasing, though, the
maximum value is attained at the right end. But we do not know
the right end of the interval, because we will choose it to meet a
given error tolerance.

8 Determining the Maximum Interval
Length

The maximum number of forward difference evaluations, N, is
related to the maximum interval length, A, by the spacing, 6,

The general expression for the length of the
interval to meet a given error tolerance is given
by:

K 811111.1’

,XE[T?%]‘/ (”)(x)‘

where we have used £= Z+ A in the interval specification.

We see that N is implicitly defined by this equation, and
therefore cannot be computed in closed form, in the general case.
However, as we have seen in the last section, if the derivative (or
preferably, its bound) is monotonically decreasing in the interval,
then its maximum value is attained at the left end of the interval,
and can be computed in closed form. When it is monotonically
increasing, some form of iteration is necessary. Three algorithms
come to mind:

(1) fixed-point iteration,

(2) secant iteration, and

(3) higher derivative extrapolation
Fixed Point Iteration

Fixed point iteration is straightforward. Starting with the interval
length determined from the left derivative, a new interval length
estimate is made from the previous one.

1

n

3 max.

/(”)(L+ /\/,.5)‘

n

1
Ny = E X,

Care needs to be taken to determine convergence, because the
function is not smooth due to its quantization to integers. As a
result, a limit cycle can occur, whereby the function oscillates back
and forth between two values. The iteration should terminate when
the value no longer decreases.

Turkowski / Image Warping

Secant Iteration

Given two estimates of the interval length (initially computed
from xy=7Z and x =L+ /V(xo)5 °), linearly interpolate to find a

better right interval endpoint.

Vo x,/V(xH) —X /V(xi)
SERTCIRNIEN

X =L+ /T/i+15

This should also be checked for limit cycles in the convergence.
Higher Derivative Extrapolation

This makes use of the Taylor expansion around L to approximate
the derivative at R, yielding the equation

K /”(x))

1
N=—-r—-o-o —2—
éf(”ﬂ)(l’) (6”/\/”

which is most easily solved by iteration, as suggested by this
equation. The main problem with this method is potential
overshoot if there are inflection points in the n™ derivative. The
other two methods are much better behaved.

10 Regularizing the Interval Length
Function

Higher derivatives have inherently wild fluctuations, and
frequently pass through zero. The reciprocal of the n™ root of the
derivative is used in the interval length computation, resulting in
frequent infinite singularities. For this reason, the derivative
should be replaced by a better-behaved function. Typically, we do
this in several steps:

(1) regularization
(2) removal of singularities
(3) composition of u and v bounds
(4) graphical analysis
(5) bounding approximation
(6) bounds check
Regularization
Many derivatives have polynomial components, with both positive

and negative coefficients. Making all of the coefficients positive
eliminates most of the singularities and ill behavior.

Removal of Singularities

Of the singularities that remain, most appear as x or y factors in
the numerator of the derivative. At zero, their reciprocal blows up
to infinity. Replacing these by expressions of the form

Va* + +* will remove those singularities. However, it is necessary
to graphically interact with this function in order to determine
appropriate values of a that preserve the shape.

Composition of u and v Bounds

There are actually two interval length surfaces: one for u and one
for v. The minimum for the two surfaces then becomes the
composite surface used in the real-time rendering.

Graphical Analysis

Interacting with a 3D graph of the interval length function is
necessary in all steps of the regularization process. However, it
appears as a separate step because here is where most of the time
is spent. In this phase, the function is inspected at various scales
and viewpoints, and 2D cross-sectional plots are produced in order
to gain a better understanding of the function. It is important to
answer the questions:

(1) What are the salient features of the function?

(2) What are the minima?

(3) What is the behavior at the origin and the coordinate axes?
(4) What is the asymptotic behavior?

(5) What is the principal domain? What region of parameter
space do you expect to be used most frequently? Are there
any forbidden zones ?

(6) Do you care if there is some inefficiency outside of the
principal domain?

(7) Do you care if there is some distortion outside of the
principal domain?

Once you gain an intimate knowledge of the function, you can

begin to think about ways to approximate it with a simpler,
computationally efficient lower-bounding function.

Bounding Approximation

Since the interval length function is not going to be evaluated in
the innermost loop, it can be moderately complex, including

(1) division, multiplication, subtraction, addition,
(2) square roots,

(3) rational polynomials,

(4) B-spline surfaces

If needed, some trigonometry, exponentials, or powers may be
used, but these are somewhat expensive, and can possibly be
approximated using argument reduction and rational polynomial
approximation.

The asymptotic behavior tends to be fractional powers (due to
the n'" root), but it isn t necessary to model this behavior, because
it is outside of the principal domain. A linear, square root, or
constant function can suffice as long as it is a lower bound. Keep
in mind that the probability of hitting the asymptotic region is
small, and you can afford to evaluate it less efficiently. Usually,
the intervals in the asymptotic region are much larger than that in
the principal domain, so would be more efficiently computed than
in the principal domain even with sloppy bounds.

Bounds Check

The final step is to check that the bounding surface really acts as a
bound for the original reciprocal n™ derivative.

Example

A texture-mapped sphere will be used as an example. The
fundamental equations for rendering a central view of a sphere

texture-mapped with an equirectangular projection image
(latitude-longitude) can be reduced (after dividing x and y by z) to:

) = arctan(), w[W]

In order to render this with cubic forward differencing, we need
fourth derivatives. The fourth derivative of u, and a smoother
upper bound are given by

244{1-)

(1+12)4 ’

Y

(1 +,12)

The reciprocal fourth root of this is used to determine interval
length. These are plotted in Figure 1 to get a good feel for the
quality of the bound. Note that although the derivative is

5
asymptotically superlinear ({H“]), the bound is linear, and

Turkowski / Image Warping

and its reciprocal fourth root is shown in Figure 2.

remains a bound outside of the principal domain of [—5,5]. This

|

Next, we compose the # and v bounds together by taking the

minimum of the two,

(l+xz+y2)4

7
2

(1+ﬁ)

and plot its reciprocal fourth root in Figure 3.

and plot it in Figure 4. In this case, the u

bounds dominate, yielding the composite interval bounding

function

2 Lo
O,
° 2y4
mg o~ +
g g v -
=
o = —
s .9 v
my ¥+
Al O, o,
> | = =
2+ 9
g +)M/._.
o,
o I ~N
A + =
B o 0
B e o
g — 4
= & o =
<A y4
w w fog
.m.m - —
= 8 + F
o,
E g A
> 2 o0, on
. N
) ® +
2]
2 tF o2
t_v,v, =] hal
QO YA4
N & [ee] =
g 90 .
[+ o,
T E N
B < +
2 g b
o g
= .
WS o
)
=
0 O ©
E-E-IN
o = 2
ZECE
V/.fnp
5 o g
atky
> w9 5
=y Tl
N— T~
< o
SVQt
S0 o3
sg2 2
S]
EgS 2
c X EE
oS 2
239 459
s &
> S o w
=
= 8§ 2.8
% .2 85
g &8 o
g 252
E =g
-] en
L8 =
5223
=
Shrem
atmw
2258
2=
558
mmeﬁ
S &8 8
o s =2
a3
= Gy .
pWoOMS
= =]
oF Y oy O <
o 2 2.2
£2528®
[TRNe i S o P

and regularized

gl

1+27.

-V

6

Finding bounds for such derivatives is somewhat of an art.

Changing all minus signs to plus is a technique that frequently
works, although more work was needed in the above example.

Figure 1. Reciprocal nth root of derivative
bound

Finding the minimum of this function (or maximum of the
regularized derivative) over an interval is not hard because of the

monotonicity of this function: just evaluate it at the interval

endpoint closest to the origin.

so it is easy to verify

gl

the u function is univariate

In this case,
bounds graphically.

1
Figure 2. Reciprocal root of derivative: [/<4)(x):| ‘.

However, the v function is bivariate. Its fourth partial derivative

with respect to x is

Figure 4. Composite bound, minimum of « and v bounds

|

82 + 827 _(1+}/2)2(3+J/2)+X6(45+52y2)+
(5547307 +16)%)+ (154222 +11)% + 4)f)

{

)

Min(Figure 1, Figure 3).

(1+x2+}/2)4

7
2

(1+12)

Turkowski / Image Warping

11 Discussion

Summary of the Algorithm

First, a class of rendering problem is identified.
Computational Accuracy

When evaluating the forward difference coefficients, keep in mind
that the powers of o get very small. Resist the temptation to
concatenate the o matrix with the power basis matrix for the
higher order polynomials. For optimum accuracy, convert the
function samples to the power basis first, then multiply by the o
matrix to yield the forward difference coefficients, performing the
dot products in doubled precision, and accumulating the
summands in increasing magnitude.

As long as the ratio between adjacent order differences is not
too large, the forward differences can be performed in single
precision floating point, which has 24-bit precision. If we split the
precision between two adjacent order differences (yielding a 12-bit
overlap), then 2048=2"" steps (almost 4096=2'2) can be taken
before '/, LSB computational error propagates between the
difference orders (rationalized as 1 bit initialization error + 11 bits
accumulation error + 11 bits clean value + 1 spare/sign bit). If the
initialization error is higher due to sloppy computations, then the
maximum interval size will need to be reduced, roughly 2 bits of
interval size for every 1 bit of initialization error, due to the split
of the bits between adjacent orders of differences. For example,
suppose that the initialization of the differences is accurate to 20
bits (i.e. the 21 bit is in error), then the maximum interval length
is about 1024=210,

The forward differences can be carried out in fixed point;
however, it is usually necessary to shift between orders of
differences. For example,

u += du >> no0;
du += ddu >> nl;
ddu += dddu >> n2;
dddu += ddddu;

The shift values depend upon the interval length as 7, = logz(/‘/),

but also to some extent on the function itself. Adequate numerical
analysis for a particular range of function can usually determine a
maximum allowable interval length and constant values for the
shifts, if desired, though shift-tailoring for each interval can
produce longer accurate intervals, potentially even longer than that
available in single-precision floating-point, since native fixed-
point is widely accurate to 32 bits, and even 64 bits on some
machines, whereas single precision IEEE floating point only has
24 bits of mantissa.

Order of Approximation

Generally, a higher order polynomial yields larger intervals
resulting in higher performance than a smaller one, at the expense
of more computation to generate the forward difference
coefficients. Also, a high order inner loop increment is more
involved and can take more time, unless all variables can fit into
registers and/or vector instructions are used. High order
polynomials are more sensitive to noise and computational errors
as well, so interval length may be limited due to computational
accuracy.

Applicability to Graphics Hardware

Forward differencing machines are particularly easy to implement
in hardware, especially in fixed-point. Evaluating the interval

length and forward difference coefficients can be done in a more
general-purpose co-processor, in a pipeline fashion.

Results
This technique was used to render cubic environment maps

[Greene86b] under interactive camera control, using fixed-point
quadratic forward differencing in standard C without the use of
specialized SIMD vector instructions. The tolerance ¢,,,, was set
to 1/10 of a pixel in eq. (8.1), and interval lengths were frequently
greater than 100. It was not necessary to have a guard band around
the image to prevent memory faults with this tolerance. We were
able to render a 1000x700 window of 16 bit pixels point-sampled
at unit zoom 30 frames per second on a 500 MHz G3 and 50
frames per second on a 1.3 GHz Pentium 4. Bilinear interpolation
reduces this to 10 and 15 frames per second, respectively. A
320x240 window yielded greater than 300 frames per second. This
yielded a 3X performance increase over a highly tuned scan
converter using forward differencing and two perspective
divisions per pixel.

Figure 5. Cubic environment map.

Figure 6. Novel view rendered with this algorithm from the
cubic environment map.

12 Future Work

Anti-Aliasing

It should be straightforward to enhance the algorithm to
accommodate anti-aliasing. In our implementation, we only
perform interpolation, which improves the quality when zooming
in, but yields jaggies when zooming out greater than 2:1. Anti-
aliasing is different than interpolation in that the kernel size for
interpolation is fixed, whereas that for anti-aliasing increases in
size in inverse proportion to the scale factor, when that scale factor
is less than 1. The scale factor is embodied by the Jacobian (partial
derivatives) of the coordinate transformation [Heckbert86], which

Turkowski / Image Warping

can be used to implement elliptically weighted average filtering
[Greene86a]:

J= Uy Vy
“y Yy

The x component of the Jacobian (the first row) can be
approximated by the first partial difference in the forward
differencing. The y component needs to have its own
approximation. Alternatively, the norm of the Jacobian can be
approximated, interpolated across the screen, and used as an index
to a MipMap [Williams83].

Better Approximation Polynomials

Chebyshev approximation generally results in half the error of our
approximation. It is desirable to efficiently find Chebyshev-like
approximations to increase (double) the interval length.

Automatic Bounds

A lot of effort would be saved with an automatic method to
produce derivative bounding functions.

Real-Time Video Special Effects

Since this algorithm is essentially limited in speed by memory
access to the source image, it seems natural to use for video
special effects, such as page curls, without the use of special-
purpose hardware.

Trivariate and Higher Dimensional War ping Functions

Our experience has been limited to bivariate warping functions,
although the algorithm lends itself to higher-dimensional domains,
albeit with more time for analysis and design.

13 Acknowledgements

Specialized texture-mapping algorithms for simple primitives have
been developed at Apple Computer since 1992, when Eric Chen
and Gavin Miller pioneered specialized rendering algorithms for
cylinders, spheres and cubes to allow interactive adjustment of
viewing parameters. Gavin Miller accelerated rendering of cubic
environment maps by linearly interpolating between every 8
perspective divisions. Ali Sazegari developed the polynomial
coefficients used for rendering cylindrical environment maps in
QuickTime” VR. Mark Wheeler developed error expressions for
rendering cubic environment maps. Apple Computer incorporated
the error-controlled piecewise polynomial rendering into the cubic
environment renderer in QuickTime” VR.

References

Beier92 Beier, Thaddeus and Shawn Neely, Feature-Based
Image Metamorphosis, Proc. SIGGRAPH 92, vol.

26, no. 2, pp. 35-42, 1992.
Catmull, Edwin and Alvy Ray Smith, 3-D

Transformations of Images in Scanline Order, Proc.
SIGGRAPH 80, pp. 279-285, July 1980.

Chen, Shenchang Eric and Gavin Miller, Cylindrical
to Planar Image Mapping using Scanline Coherence,
U.S. Patent no. 5,396,583, March 7, 1995.

Chen, Shenchang Eric, QuickTime” VR~ An
Image-Based Approach to Virtual Environment
Navigation, Proc. SIGGRAPH 95, pp. 29-38, 1995.

Debevec, Paul, C. Taylor and Jitendra Malik,
Modeling and Rendering Architecture from
Photographs: A Hybrid Geometry and Image Based
Approach, Proc. SSIGGRAPH 96, pp. 11-20, 1996.

Foley, James, Andries van Dam, Steven Feiner, John

Catmull80

Chen95a

Chen95b

Debevec96

Foley90

Greene86a

Greene86b

Heckbert86

Horry97

McMillan95

Moshovos01

Oliveira00

Paeth86

Patt01

Ralston78

Seitz96

Shum99

Smith87

Torberg96

Williams83

Wolberg89

Wolberg90

Wolfram88

Hughes, Computer Graphics: Principles and
Practice, Addison-Wesley, 1990.

Greene, Ned and Paul Heckbert, Creating Raster
Omnimax Images from Multiple Perspective Views
Using the Elliptical Weighted Average Filter, [EEE
Computer Graphics and Applications, vol. 6, no. 6,
pp. 21-27, June 1986.

Greene, Ned, Environment Mapping and Other
Applications of World Projections, IEEE Computer
Graphics and Applications, vol. 6, no. 11, pp. 21-29,
November 1986.

Heckbert, Paul, Survey of Texture Mapping, /[EEE
Computer Graphics and Applications, vol. 6, no. 11,
pp. 56-67, November 1986.

Horry, Youichi, Ken-ichi Anjyo, Kiyoshi Arai, Tour
Into the Picture: Using a Spidery Mesh Interface to
Make Animation from a Single Image, Proc.
SIGGRAPH 97, pp. 225-232, 1997.

McMillan, Leonard and Gary Bishop, Plenoptic
Modeling: An Image Based Rendering System,
Proc. SIGGRAPH 95, pp. 39-46, 1995.

Moshovos, Andreas and Gurindar Sohi,
Microarchitectural Innovations: Boosting
Microprocessor Performance Beyond
Semiconductor Technology Scaling, Proc. IEEE,
vol. 89, no. 11, pp. 1560-1575, November 2001.

Oliveria, Manual M., Gary Bishop, and David
McAllister, Relief Texture Mapping, proc.
SIGGRAPH 2000, pp. 359-368.

Paeth, Alan, A Fast Algorithm for General Raster
Rotation, Proc. Graphics Interface 86, pp. 77-81,
1986.

Patt, Yale, Requirements, Bottlenecks, and Good
Fortune: Agents for Microprocessor Evolution, Proc.
IEEE, vol. 89, no. 11, pp. 1553-1559, November
2001.

Ralston, Anthony and Philip Rabinowicz, 4 First
Course in Numerical Analysis, McGraw-Hill, 1978.

Seitz, Steven and Charles Dyer, View Morphing,
Proc. SIGGRAPH 96, pp. 21-30, 1996.

Shum, Heung-Yeung and Li-Wei He, Rendering
with Concentric Mosaics, Proc. SSIGGRAPH 99, pp.
299-306, 1999.

Smith, Alvy Ray, Planar 2-Pass Texture Mapping
and Warping, Proc. SIGGRAPH 87, pp. 263-272.

Torberg, J. and J. Kajiya, Talisman: Commodity
Realtime 3D Graphics for the PC, Proc. SIGGRAPH
96, pp. 353-363, 1996.

Williams, Lance, Pyramidal Parametrics, Proc.
SIGGRAPH 83, vol. 17, no. 3, pp. 1-11, 1983.

Wolberg, George and Terrance Boult, Separable
Image Warping with Spatial Lookup Tables, Proc.
SIGGRAPH 89, pp. 369-378, 1989.

Wolberg, George, Digital Image Warping, IEEE
Computer Society Press, 1990.
Wolfram, Stephen, Mathematica: A System for

Doing Mathematics by Computer, Addison-Wesley,
1988. <http://www.wolfram.com>

