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Vectors and Points

We will have occasion to distinguish between 3D vectors and 3D points. A vector has a magni-
tude and a direction, but does not have a location, whereas a point only has a location, and no
magnitude or direction. A vector cannot be moved, but it can be scaled and rotated. A point
cannot be scaled or rotated, although it can be moved; agroup of points can, however, be rotated
or moved relative to each other. A linear transformation is appropriate for vectors, whereas an
affine transformation is appropriate for points. Thereisaunique origin in a vector space, but an
originisarbitrary in an affine (point) space. These properties are summarized in the table below:

Attribute Vector Point

Represents magnitude & direction location

Origin unique arbitrary

Transformation linear affine
scale move
rotate

When points and vectors are represented by three components, they can only be distinguished by
context. We may sometimes represent them by four coordinates (X, vy, z, w), in what is called
homogeneous coordinates. We interpret a4-vector asapoint in 3D by its projection onto the hy-
perplane w=1, viz [ X/w, y/w, Zw]. The indeterminate form at w=0 is resolved by taking the limit
as w approaches 0 from above: the point approaches infinity in a particular direction; hence the
vector interpretation.

By convention, we will represent points as homogeneous 4-vectors with w=1.
For example, we represent the point 1 unit along the x-axis as:

1 0 0 1
whereas the x-axis (avector) itself is represented as.
|1 0 0 0O

In non-homogeneous coordinates, they are both represented as:

1 0 d
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so only context can distinguish them.
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Coordinate Frames
We shall usually represent a coordinate frame for three-dimensional points with a 4x3 matrix:

éxu ex, X, X,

u é u
F= EYU éx Y Y
&u &, Z Zu

eOlL]l @x Oy OZ (eq 1)

This establishes alocal reference frame within a more global frame by representing the local ori-
gin, x-, y-, and z-axes in terms of the global coordinates in the rows of the matrix. In particular,

o=[o, o, o] (€9. 2)

IS a point that represents the origin of the local coordinate frame, represented in the coordinates
of the global reference frame.

The local x-axis,

X=[x, X, X] (eq. 3)
isavector (not a point), with both magnitude and direction.

Similar sorts of interpretations are appropriate for the'Y and Z axes.

The matrix representation of this coordinate frame is more than just a convenient representation;
itisin fact related to the more familiar 4x4 graphics transformation [Newman 79] matrix:

& |00 & |0u &, X, X, |00
u a U
_— AL AR AL
‘e Ou &|ou & Z, Z |00
& 14 51u ®©, 0, O, 14 (eq. 4)

where the 0's and 1 in the right column underscore the interpretation of X, Y and Z as vectors,
and O asapoint.

A 4-vector, with w=0, will not be affected by the trandation portion (bottom row) of a 4x4 ma-
trix transformation, whereas the 4-vector with wt 0 will.

We illustrate the effect of a coordinate transformation on the homogeneous representation of the
x-axis (avector) with a4x4 matrix multiplication:

eX, X, X,|0uy
&, Y, Y,|oua
10 0 Oz 77 su=l% X, X, 0
1
O 0 Ol (.5

With the fourth component zero, we see that a vector transforms into a vector. Not just any vec-
tor, the x-axis transforms into the vector [ X, X, X, 0f,thetoprow of the transformation ma-

trix. It iseasy to see that the y- and zaxes transform into the second and third rows of the ma-
trix, respectively.
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The transformation of the origin (a point) yields:
X, X, X |0y

X y z
&, Y, Y, |00

[0 0 O ].JezX z, 7, 0~
£©, o, o1}

X y z

|. OX Oy OZ 1]

(eq. 6)
the bottom row of the matrix. Thisis consistent with the definition we gave it earlier.

Since the transformation of an arbitrary vector

exX, X, X |0y
&, Y, Y, |0d

lv, v, v, 0 &7 7 z o0 [V X+ Y +v,Z, v X +VY, +v,Z, VX, + VY, +v,Z, 0f
g()x Oy OZ 1H

(eq.7)

doesn’t depend at all on the last row (translation) we will generally omit it as well as the last col-
umn, to obtain the familiar 3x3 linear transformation matrix for 3-D vectors:

eX, X, X0
[vX vy VZI ?Yx L 4 U = lVXXX v, Y, +v,.Z2, v, X +V Y +v,Z v, X +VY, + vZZZ]
& u
er Zy ZZU (eq 8)

We will use this as the intrinsic coordinate frame for 3-D vectors whereas the 4x3 matrix
(eg. 1, page 3) will be used as the intrinsic coordinate frame for 3-D points, where we extend the
operations of linear algebrato affine algebra as follows:

X X, Xd
&Y, Y, Yu
v ey, ;24
gC)x Oy OZH

=[P X+ Y+ RZ O, P X +PY, P2+ 0, pX+pY,+pZ +0) (eq. 9)

Thisis consistent with the treatment of 3-D points as homogeneous 4-vectors, asin (eg. 6).
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Examples: Using Coordinate Frames to Solve Problems

(Example 1) Find the simple plane rotation that aligns the x-axis to the y-axis.

If the x-axis [1, Q] rotates into the y-axis [0, 1], the y-axis rotates into the negative x-axis[-1, 0].
Therefore, the desired transformation is:

eXu eX X,u 60 1
u
“&HE g1 of (eq. 10)

(Example 2) Find the ssmple plane rotation that aligns the x-axis to the direction [1, 1].

From the previous example, we know that the new y-axis must be aigned with
|1 1R, =[-1 1], sothat the desired matrix is:

éXu 1e1 10
“&vHT2&1 1A

The normalization factor comes about because the Euclidean norm of each of the two rows is
J2 . Without this, the transformation would enlarge vectors as well as rotate them.

(Example 3) Find the simple plane rotation that rotates an arbitrary normalized vector v into an-
other normalized vector w.

We approach this by first rotating v to align it to the x-axis, then rotating it to align it tow. In

order to determine the first rotation, it is easier to specify the rotation from the x-axis to v, and
then invert it.

Rotating the x-axisto v is accomplished by the matrix:
év u e Ve 'V u
B gVRgoH € V v U

Since this is an orthogonal matrix (all pure rotations are orthogonal), its inverse is equal to its
transpose:

- 0 &% -V
Y %VRQOH @/y VXH

The rotation from the x-axisto w is found similarly:

R éw eW Wu
_SNRQOH & W, WH

Therefore the desired transformation is the concatenation:
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_é VvV uéw g &y -vaew, wa e VWEvw, o VW - VWG
- A VAN s —_ A s A , o—_— \
v® w v w _ A - )
R H BVRH B Vi Hew WH & ‘Vny VyW, W+ VW

(eg. 11)

(Example 4) Find the skewing transformation suitable for italicizing letters by % unit in x for
every unitiny.

We basically just want to remap the y-axisto |4 1 while the x-axis remains the same:
(&0
& 1t

(Example 5) Find the rotation that takes the vector %Il 1 1| onto the x-axis, through the plane
that contains them both.

The axis of rotation can be obtained as:
n_v'x 211120 ¢
v x|l [ 2 4°[20 qf

=50 1 -1
where x isthe x-axis. An orthogonal third vector can be obtained by crossing this with the given
vector:

m = nv 01 -J"1 11 _,
In“viflo 1 -2 1 9] *

These three vectors then make up an orthonormal coordinate frame:

[2 -1 -1

This transformation takes the x-axis onto the vector [1 1 1], and the zaxis onto the axis of
rotation. In order to ssimplify the rotation, we would like to have the inverse of this, namely, to
transform the axis of rotation onto the zaxis. Since N is an orthogona matrix, itsinverseis sim-
ply the transpose:

N*=N"=

él"‘ él"‘ 3"\’
N S o
Co.C\oonC

It can be verified that the vector %[1 1 1 maps onto the x-axis, that the axis of rotation,
—+[0 1 -1, mapsonto thez-axis, and that the x-axis maps onto

xe=[% &
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A simple rotation about the z-axis in this frame would have the y-axis map into

y¢:x(R290:[-% = 0
where
é0 1 Oy
Reo=61 0 00
€0 0 1f (eq. 12)

isthe 3D analog of (eg. 10), and rotates the x-axis onto the y-axis around the z-axis. Putting this
together into atransformation, we have:

5 T

— 2 1

"tem E
€0 0 14

We then need to go back to our original frame by using N; the composite transformation is:

2 2 6 L 2 e 1 4 ¢
° % Opn % 0y 7z L
=NT —eL _ 41 4 Ug =2 L je2. - L - LU
T=N'RN £ Ji,?'./éﬁolfé.lé T
«l _ L1 _ L < L - L1
& ~% "HEO0 0 UK F -%g
P
?ﬁ "B Jél,J
6L 141 110
= F BT IpTZ,
€1 .1 _o 21U
€A 25" 2 2737 20

a somewhat formidable expression. No trigonometry per se has been used for this derivation:
only cross products, vector normalization, and matrix multiplication. We generalize this in the
next example.

(Example 6) Find the rotation that takes an arbitrary normalized vector v to another normalized
vector w, through the plane that contains them both.

Generalizing our experience with (Example 3) and (Example 5), we have the matrix that trans-
forms v onto the x-axis and the axis of the plane of rotation onto the zaxis:

L, AT
evu
N'=ému
EnH (eg. 13)
where
v w
n=—
v’ wi (eq. 14)

is the axis of rotation, and
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_n'v
“n v (g, 15)
isthe third vector that completes a dextral orthogonal basis. Theimageof winN' is:
we=wN' (eg. 16)
The transformation that rotates the x-axis (i.e. the image of v) onto w ¢ (the image of w) is:
é we y
R=8&WvR, U
g z ¥ (eq. 17)
where
z=|0 0 1

isthe zaxis. Thedesired transformation is then:

Rv® W= NTRN (a:] 18)

(Example 7) For a general transformation on a set of points, suppose that we would like to scale
the x-axis by 2, the y-axis by 3, the z-axis by 4, and we want to reorient the object described in

terms of those points so that the new x-axis points in the direction % |1 1 1, they-axis points
in the direction [1 0 0], and the z axis points in the direction 5|0 1 -1, and further, that
the whole object be shifted in position by [10 20 -27|

Just copying these specifications into a 4x3 matrix, we get:

z 2 2 2 N
€s 7 £ U
T_é3 0 0
- a 4 4 0
0 7z -%*
&0 20 -27H

Note that this transformation is more complex than others that we have encountered before, and
would be virtually impossible to describe in terms of elementary rotation, scaling, skewing and
tranglation operations, yet it was extremely simple to describe and implement in terms of a coor-
dinate frame.
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Another View of the Viewing Transformation

In Smith’s paper on the Viewing Transformation [Smith 84], he analyzes the viewing transforma-
tion by breaking it up into elementary components. We base the construction of the viewing
transformation on this paper, but we do so by analyzing the components in terms of their coordi-
nate frames.

Foley and van Dam [Foley 82] have figures and text that strongly suggest construction of the com-
ponents of the viewing transformation via coordinate frames, but they stop short of doing so.

The Camera’s Modeling Frame
The camerais placed and oriented within the global coordinate frame with the 4x3 matrix:
eXu éX X, X
_éva ey y yu
TézU €z Z, zu

gofl & o, of (eg. 19)

where O isthe camera slocation, and X, Y and Z areitslocal x-, y-, and zaxes, respectively.

The Frame of the Camera’s Viewing Plane
This frame accounts for the size of the window in the viewing plane and its displacement from

the center:

ou

>éD>X8?\

N
. C»

<
I
ol
g
o

yu (eg. 20)
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The perpendicular distance to the viewing plane, d, is arbitrary, and serves only (adong withs ,

S, C and cy) to define the pyramidal cone of a perspective view. Any distance can be used, in
order to assure that the resultant image contains all of the objects of interest.

The scale factors s and S, correspond to the half-width and half-height of the window on the

viewing plane, and should have the same aspect ratio as the physical dimensions of the window
on the display device.

Usually, the center of the view plane window is [0, 0], but other values are useful when partition-
ing the image up into sequential bands or subregions when there is not enough memory to render
the entire image at once.

The Clipping Frame

This frame scales the axes in the viewing plane so that the coordinates of interest are in the rect-
angular parallelepiped { (X, V, 2): -1£ X£+1,-1£y £+1,0£z£+1 }:

¢l 0 Ou
c=2& 1 o
g o 18
Since this is nothing more than an isotropic scale in 3D, it is either implemented as a scalar
multiplication, or isincorporated into the V matrix above as:
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Ray-Traced Texture-Mapping of Parametric Surfaces

Ray Tracing [Whitted 80] [Heckbert 84] [Amanatides 84] [Cook 84].

With texture-mapping, we link together three coordinate systems: the world, the screen, and the
parameters of the ray and surface:

Parametric Coordinates
(uwit)

Parametric Frame

T(xy.2)
Twwt)

Homogeneous
Screen Coordinates

(mn.o)

Homogeneous
Screen Frame

T(xy2)

/ T(mn.o)
s

Coordinates on the image plane are homogeneous, such that, when o = 1, mand n correspond to
the usual coordinates on the screen. The ray is parametrized in terms of t, and u and v are the
parametric coordinates of the surface.

The unit vectors for m and n are the usual ones on the image plane, i.e. screen x (m) to the right
by one pixel and screen y (n) down, by one pixel, although screen y could go up insead. The unit
vectorsfor u and v are the usual ones for parametric surfaces. The unit vector for t is sometimes
taken as the unit vector in (X, Yy, 2) in the direction of the ray. The unit vector for o is the differ-
ence between the origin of the screen and the camera location. It should be noted that neither of
the coordinate systems (m, n, 0) and (t, u, v) are orthogonal nor right-handed, nor do they need to
be. In the above diagram, the lines with arrows indicate unit vectors in each of these coordinates.
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We can describe the unit vectors of the screen and parametric coordinate systems in terms of the
world coordinates, (X, Y, 2):

A

m=[x, % zl. n=[x, ¥y zJ o=[x y z] (eg. 21)

A

t=x y 1zl u=lx, vzl v=lx ¥y 2z (eq. 22)
where the notation x  indicates the change in x that corresponds to a unit change in m, or equivar
lently, the partial derivative of x with respect to m

Note that these are considered to be unit vectors in their own coordinate system, and do not, in
general, have unit length in the world coordinate system.

These vectors can be conveniently packed into Jacobian matrices to effect a change of coordi-
nates:

A

amu 00y 2 & Yo ZyU

S=¢€ u-L2&»= _@é ua

élj._', T(mno) o
€00 & % i (eg. 23)

&l ( , éx, Yy zUu

T:é\?lj:Ly’Z‘} :é)g/ Y, le:l

g "Mt gy ol
X % 4 (eq. 24)

One of the side-effects of using homogeneous screen coordinates is that:
|0 0 1S =world coordinates of screen origin.

In order to do texture mapping with filtering, we need to map the neighborhood of a pixel to the
neighborhood of a point in the surface’ s parametric space. This is accomplished with the aid of
the Jacobian:

_ Tluwvt,

U=ST'= - =
T (m,n,0)

(eg. 25)

The 2x2 submatrix, partitioned above in (eg. 25), is the portion that we are interested in. It isthe
differential coordinate frame of a pixel in terms of differential surface parametric coordinates. In
particular, moving one pixel to the right corresponds to moving

lun vl
in (u, v) space, and moving one pixel down (or increasing screeny) corresponds to moving
(TRA

in (u, v) space. These would be the axes (mgjor and minor) of an elliptically-weighted average
filter [Heckbert 8x]. By finding the bounding box of these vectors, we can apply a summed-area
table [Crow 84]. After finding the norm of the 2x2 matrix, we can apply MipMapping [Williams 83]
[Turkowski 88].
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The texture coordinates themselves are found from solving the system of three ray-surface inter-
section equations in the three unknownst, u, and v.

Given aray
r(t) =r, +r.t

aviewing trransformation
V*%(x,y,zZ ® (m,n,0)

mapping world coordinates to homogeneous screen coordinates
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00000000000000000000000000000000000000 The req isj ug a g:rapbook

Relationship between the Elementary Viewing Transformations and Coordinate
Frames

In the following, we show that the elementary viewing transformations in [Smith 84] correspond to
the inverse of appropriate coordinate frames.
In Smith’s analysis, he has a matrix that represents the position of the camera:
él 0 0 |0u
N 2o 0 | o
éo o0 1 |0

& p
€ 0, _Oy -0, 1ld

[EEN

(eg. 26)
where
o=[o, o o (eq. 27)
isthe position (origin) of the camerain world space. The frame corresponding to this matrix is:
¢l 0 0 |0u
€ 1 oo
A 1_e U
é0 0 1/0¢
o, Q o |1g (eg. 28)

The Camera’s Orientation Frame
Smith’ s representation of the orientation of the camerais:

1 <-1

é&|0u” e, x, x|O0u
U &1l
B:g_oﬂ Sk W Y| Oy
& | 0u éz z, z,|00
(1 & o ol (eq. 29)
where
x=[x, x x]
y=[% % ¥
z2=[z 7, 2] (eq. 30)

represent the x, y and z vector axes of the camera in world coordinates. If these vectors are or-
thonormal, then B simplifiesto:
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00
G
Oy
0
1H 31
(eg. 31)

A - X y z

U0 (U
51u 60 0 0/ 1¢ (eq. 32)

The Camera’s Modeling Frame

Concatenating the A and orthogonal B matrices, we arrive at:

é Xx yX ZX Oq
é u
€ X Z 0>
AB,, =& ' " ' ;
ortho — A X zZ 0¢
e 7 Y, z l,J
P2 U
€ X0 X,0p- X,0, | - Y04~ ¥0,- ¥,0, | - 40,- 2,0, - Z,0, 1U (eq 33)

Note the coupling of the effects of the A and B matrices. Using the more general, non-orthogo-
nal B matrix yields an even more complicated expression. If we instead look at the correspond-
ing concatenated frames, we arrive at:

& v, v | o
l_plp-1_@* y 21U
(AB) '=BA & 2 7|00

€ ]
€0y Oy 0, lU (eq34)

Unlike (eg. 33), this expression is valid for the more general, non-orthogonal B matrix. It un-
couples the effects of camera position and orientation. The similarity to (eqg. 4) allows us to rep-
resent this as a more compact 4x3 coordinate frame matrix, asin (eg. 1):

&, %X, X0
5 v yY
ex Yy Yy
&, 2, %0
&, o, oY

X y zU (eq 35)

The significance of this frame is that it allows the camera to be moved in the scene in the same
manner as any visible object in the scene.

Examples of the Camera Modeling Frame
Blah, blah, blah. Many figures.
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(fig. 1)

The Frame of the Viewing Plane

Smith’s next transformation accounts for projecting onto a portion of the viewing plane that is
not centered on the viewing axis:

él 0 0 Ou
é a
~ 0 1 0 O
c=%¢ Cy ¢
éx -2 1 ou
é d d a
e0 0 0 10 (eg. 36)
where | C, Cy] is the center of the projection onto the viewing plane, as offset from the normal

viewing axis, and d is the perpendicular distance from the camera to the viewing plane. The
distance dis arbitrary: al that matters is the ratio, which determines an orientation relative to
the normal.

Theinverse of this matrix is:

é1 00 Ol

(eg. 37)

At first glance, this does not look like a coordinate frame of the form (eg. 4). However, when we
view this as a coordinate frame within the plane, we find that the 3x2 submatrix:

é u
gl 0Oy
éop 1U
g:x Cyl,]
& 4t (eq. 38)

represents atrangation in the plane as indicated in the following diagram:
(fig. 2)
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The Frame of the Canonical Viewing Volume
The transformation to the canonical viewing volumeis given by Smith as:

éd U
&1 ° Y|%
€ d U
eo — 0 |ou
D=ga Syf U
é 1| U
Y0 0 =10y
& tlg
e0 0 0110 (eg. 39)
Itsinverse,
és,f u
q 0 O Ou
é S f L,.I
D'=é0 -2 o/o0
é d a
(2 0 0 f Ol;
g0 0 0|14 (eg. 40)

Can be easily interpreted as a change in the scale of the coordinate axes. Each of the x, y, and z-
axes are scaled by the distance to the far clipping plane (i.e. they eventually will all be divided by
z in order to get the desired perspective foreshortening). This accounts for the factor of f. the
sx/d and sy/d specify the size of the axes as normalized to the viewing plane.

(fig. 3)

The Composite Frame of the Canonical Viewing Volume
The composition of the preceding two framesis:
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éfs, u

&g 0 0|0y

é fsy U

‘1_~1.~1_€0 — 0|0u

efe, To, o] qu

éd d u
e0 0 Of1g (eq. 41)

Thisisillustrated by the following figure:

(fig. 4)
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