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1. The Differential Geometric Neighborhood of a Surface

For shading in three-dimensional computer graphics, it is useful to abstract the geometric
properties of a surface at a point on that surface. The collection of properties we cal the
surface neighborhood, or simply the neighborhood.

1.1. Position

Given a point on asurface, its position or (x,y,z) coordinates can be found. It is usualy
already given.

1.2. Normal

The normal to a surface can be found for orientable surfaces. For parametric surfaces, that

can be found by taking the cross product of the tangent in the u direction by the tangent in
the v direction, and normalizing.

For implicit surfaces, f (x, Y, z) = 0, the normal can be found by computing the gradient,
g=Nf, and normaizing: n =g/|d.

Occasionaly, there are singular points on a surface where the normal is multiply-defined
(as at a crease or cusp or the apex of a cone), but we can always disambiguate them by
association with a subsurface.

1.3. 2D Parametrization

Parametric surfaces are vector functions of two parameters: (x, Y, z) = p(u, v) . Sometimes
auxiliary parametrizations are introduced, e.g. to assure that the parametrization liesin
[0,1] “ [0,1], which is apractical convention used for texture-mapping.

1.4. Tangents

Most surfaces we work with in computer graphics have some sort of parametrization,
either natural or assigned. We can either evaluate the parametrization at each point or
establish a consistent way to compute it. Either way, we can a so evaluate the tangents to
the surface in the direction of increasing parametrization. If the position is specified as
x=(x,y,2z) and the parametrization is specified as (u,v), then the tangents are given by:

Tuyz) _efx Ty fzo

W & fu ‘ﬂuGZ[X“ Yo 2]

and
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When these tangent vectors are stacked together to form amatrix, it is called the tangent
Jacobian matrix:

_(xy.2) & Y ZU_éXu
Tfuy) &y, zH BH
1.5. Second derivatives and the Hessian Matrix
We can also take second derivatives:
oo P Yo Z] [ Ve Zaf0] 6 Xa
UV’ X Yo Za] [X% Yo ZJH &a X

This arrangement of second derivativesis atensor of rank three called the Hessian. For
the surfaces we are interested in, the skew diagonal cross derivatives are equal, soitis
only necessary to store 9 numbers, not 12.

1.6. Metric Tensor or First Fundamental Form

Further derivatives of the surfaces are rarely used, however certain functions of these
derivatives are used. One is the metric tensor or first fundamental form:

éXIJ. XU XU -)(Vl:l
®(V.XU XV.XVH

which is used for measuring distances along a curve on the surface:

G=TT =

t1
s=0) JUGU" dt
to

the differential unit of measure, UGU" , must be used because the (u, v) coordinates do not
liein a Euclidean space.

1.7. Curvature Tensor or the Second Fundamental Form

From the second derivatives, we can compute the curvature tensor or second fundamental
form:

_@N- Xy, N X0
“@n-x, n-x.H
which is used to measure normal deviation from the tangent planein the direction u :
ubu’.
The normal curvaturein the direction u is given by:
_ubu’
" uG’

D=n-H

1.8. Gaussian Curvature
The Gaussian curvatureis given by:

D
<D
|G|

1.9. Normal Curvature for Implicit Surfaces
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Normal curvature can be computed for an implicit surface f(x,y,z) with
[Hanrahan& Mitchell]:

_dx-dn
" dx - dx
where dx isadifferentia direction in the tangent plane, and dn isthe differential normal,
given by:
dn = ((g -g)! - (ggT))dg
@ 9y
where g isthe gradient of f (g = Nf ) whose differentia is:
dg=Hdx = ?fyx f, fyzL,'dx
gfzx fzy fzzlljlI

1.10. Texture-to-Screen Jacobian Matrix

In 3D computer graphics, we visualize geometric models by projection through a camera
onto a pixel grid on the screen. The jacobian matrix of the coordinates in parametric
space (u,v) to the coordinates in the pixel grid (i,j) gives us an idea of the shape of the
pixel as projected onto the parametric surface.

v
Twy) _eqi gia_&4 Mo
e Tia

J=

The Jacobian matrix maps the square shape of a screen “pixel” into a parallelogram. In
order to adequately represent the texture image on the screen, all of the texture pixels
within this parallelogram need to be taken into account when calculating the value of the
screen pixel. Inthe genera case, the Point-Spread Function (PSF) to be used for filtering
will extend dslightly outside this area to provide continuity in color from one pixel to the
next.

For apixel of unit radius, the function
f(q) =[cosg sing]J

traces out an ellipse in the parametric space corresponding to the projection of the pixel
onto the surface.

A sguare pixel transforms into a parallelogram in texture space:

s

e% Ql‘,l
ér _1q
5 -3
Q:A ,
1 1
&y 4
& {
&3 30

where Q isthe parallelogram in texture space.
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1.11. Projected Pixel as a Texture Rectangle

While this jacobian matrix itself can be useful for anti-aliasing texture-maps [Heckbert],
other texture-mapping algorithms use derivations of this. The summed-area technique
[Crow] approximates this ellipse with a rectangle, and the MipMap technique
approximates thiswith a circle. The rectangle is computed as:

Du =|u| +|uj|
Dv= v +]v|
1.12. Projected Pixel as a Texture Circle (or Square)

and the diameter of the circle is computed as:

d=[l
for some suitable norm. Some of the commonly used norms are given below and
evaluated in the appendix:

3 ]|, = maxa o |
J

oo + 8] +/ (Boo *+ @) - K80t - Bso)
2

2

:an Z:miaxll il; "[Q,— ]2x2

3, =max |3 &

Heckbert i

:aﬂ y :m?xéi_ ||

T _ aoo2 "'a012 +3102 + a112 + \/(aoo2 "'3012 + aioz + a112)2 B 4(a00a11 - a01‘310)2
[a]all, = 2

1.13. 3D Parametrization

To facilitate placement of solid textures, it is useful to have a 3D parametrization
different from that of the world space coordinates. Often, thisis the modeling (local)
space coordinates, but it may be different for aesthetic reasons. In most cases, this
parametrization is an affine transform of the world space coordinates:

exX, Yu Zu

_ &, ¥% %
[x y Z]=[u v w 1](::%v vz

&, Yo 2t

where (u,v,w) isthe 3D parametrization.

1.14. Tangents of 3D Parametrization

We can define tangents with respect to the 3D parametrization as we did with 2D
parametrizations. If the relation with world space coordinates is an affine one, then the
tangents are simply the top three rows of the affine mapping matrix:
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eXU yU ZJU
T(xy2) —éx vy, z

) &, Yo Z.4Y

1.15. 3D-Texture-to-Screen Jacobian Matrix
For anti-aliasing purposes, it is useful to have the jacobian matrix of the 3D
parametrization to screen space:

T(uv,w) &k Vi W
16.5)) &4 v W
Thismaps acircular pixel in screen space into an ellipse in parametric 3-space, or a

square pixel in screen space to a parallelogram in parametric 3-space. This can be used to
filter atexture anisotropically, to get the maximum sharpness in each direction.

1.16. Projected Pixel as a 3D Texture Sphere

When generating an anti-aliased solid texture, it is sometimes more convenient to filter
the texture isotropically. For this, we would like to reduce the above jacobian matrix to
one number. For this, the L1, Ly or Lyeckbert NOrms (as described above) are appropriate.

1.17. Ray
Thereisaray that comes from the camera through the given position in space. With a
projective camera, all rays pass through the center of projection. With an orthographic or
oblique camera, no rays pass through the same point (except for the point at infinity).

1.18. The Geometric Neighborhood Data Structure

We can bundle all of these into a C structure:
struct SurfaceNei ghborhood {

Poi nt 3D posi tion; I* x,y,z */

Vect or 3D nor mal ; /* nx, ny, nz */

Poi nt 2D paranetri zation; [/* u,v */

Vect or 3D tangent [ 2]; [* 9(x,y,2)/Mu, Ux,y,z)/ v */
Vect or 3D hessi an[ 3] ; /* uu, uv, vv */

Mat ri x2x2 metric;

Mat ri x2x2 curvature;

fl oat gaussi anCur vat ur e;

Mat ri x2x2 par anscr eenJacobi an;

Vect or 2D par anfScr eenRect ;

fl oat par antscr eenCircl e;

Poi nt 3D paranetri zati on3D;

Vect or 3D t angent 3D0[ 3] ;

Mat ri x2x3 par anBDScr eenJacobi an;

fl oat par anBDScr eenSpher e;

b

We have given methods for computing all of the quantitiesin this structure except for the
jacobian of parametrization to screen. First, we need to know something about the camera
transformation.

2. Computing 2D Parametric Tangents for Polygons
Given the (x,y,z) and (u,v) coordinates for three consecutive points:

[Xo Yo zo]« [Uy V]
[ % z]«[u v
e v2 2]« [u V]
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the unique affine mapping that is consistent with this mapping is given by:

& Yo ZU & v e, y, zU

& w zU=&y v 1B vy, zU0

& ¥, zH 8, v, 1B, v, zb
The right matrix specifies an affine transform from (u,v) to (x,y,z), and may be solved for
with Gaussian elimination or L-U decomposition; thisis recommended over inversion of

the (u,v) matrix because it is faster and more accurate. The top two rows of this matrix
are the tangents with respect to u and v.

We can optimize this a bit more, since we are only looking for the tangents, not the entire
transformation function. If we subtract the last row from the first and second rows in the
(x,y,2) and (u,v) matrices, we get:

% Dy Dzu_é&Du, Dvéx, ¥ Zd
&@x Dy, DzH &Du DvHEX vy, zZH

and after inversion, the tangents are given by:

&, Yu Z0_éDU, Dvi'd@x, Dy, Dz

& Y% zH €u DvH BDx, Dy, Dzf
Thisrequires less than half the amount of computation, since inversion or LU
decomposition of a2x2 matrix is lessthan half the work of a 3x3 matrix.
Thisworks fine for triangles, but it is sometimes desired to estimate tangents for a
polygon with more than 3 sides. We suggest repeating this computation for all sets of 3
consecutive points. This results in tangents that vary over the surface of the polygon.
Sometimes, polygons are used to represent a tessellated curved surface. In this case, the

normals are probably sampled at the vertices as well. Alternatively, there are algorithms
that estimate normals from incident faces.

The computed tangents can be corrected to be consistent with the normal by assuring that
the component of the corrected tangent in the direction of the initial tangent is equal to
theinitial tangent. Thisisillustrated in the diagram below:

t¢=|tﬂ|2(n' t)" n
In "t

The advantage to this kind of projection isthat the corrected tangent has a component that
isegual to tangent of the polygon. Another vertex would also have this property, so that

when the tangents are interpolated, only the t. components would be interpol ated.

3. Computing Curvature for Polygons

Polygons are flat by their nature, so they have no curvature. But if the polygon was
created from sampling points and normals from a curved surface, the normal curvature
may be estimated from the rate of change of the unit tangents.
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4, Camera Model for Projecting Points
The viewing pipeline is assumed to take the following form:

q=pMVCS
where
A2 =Pr M4 Vi aCo Sy
specifies the sizes of the matricesinvolved
P=[% Yo Z 1
isapoint in modeling (local) space, and
a=[x ¥ z w]
isapoint in screen space. The matrices:

&y, My M, Oy
M - ?mlo mll rrb Ol,]
?T]ZO rnZl rnZZ OL,J
gy, m; m, 1§
maps model to world space, and takes on general values,
éVOO VOl V02 00
V — ?Vlo Vll V12 Ol;‘
?\/20 V21 V22 Ol:l
8V30 V31 V32 1H
maps world to camera space, and is orthonormal in the upper left 3x3,
& O 0 0y
€0 ¢, 0 o0«
B ;t:zo G Cp C23l,]
80 0 0 c,f
maps camerato clipping space, and
&S, 0 0 Oy
€0 s, O Od
>0 0 s, ol
&, s 0 1

maps clipping to screen space.

C

Let us call the concatenation of the matrices A:
A=MVCS
where

oo 801 8 gl

A

_8 A & &l
Cor, By By 8!

-

By, a; a, a,l
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Then

q=pA
maps from model space to screen space.

S. Determining the Ray
If A maps from world (or modeling) space to screen space, then A-1 maps from screen
space to world space:

w yw zaw wl=[i j k ZA™

@y by bpo
&, b, b,d
ébzo b21 bZZI:I

&, b, byl

[ J k 1,

[ijkl]

where
B=A".

This transforms from screen space to world space. The plane at k=0 corresponds to the
near clipping plane, and the plane at k=-¥ corresponds to the eye pointl.

In this section, we find it useful to define the intermediate variables:

@, by by b
[Cx G C CW]=[i j 1]?310 b, by, blal',I
&, b, b, byb

This then reduces the above transformation to:

] =|-bZOk+Cx b21k+cy b22k+cz]

X Z
by oK+,

5.1. Ray from Screen Point #1
Given apixd (i, j), we find that theray is given by:

1Thisisthe result in systems that have the depth variable, k, pointing away from the viewer. In systems that
have k pointing toward the viewer, the eye point corresponds to k=+¥.
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k+c, byk+c, bk+c]
b,k + ¢,

[y
[x v 7=
However, it can also be represented in the form:

[x y z]=[axt+bx at+b, azt+bt]
by a suitable case analysis.

Casel:by3® Oandg,?® O.
Two points on the ray can be found by substituting k = -¥ (eye point) and k = 0 (near

clipping plane):
_ébZO bZl bZZU
X vy Zy|lEa~ = =,
by ml= g 5, b
—éCx Cy Czl"l
[Xo Yo Zo]—gc— a C_H

yielding the ray emanating from the eyepoint:

by =l bl e 6 of oo by b0
b23 1 Cw b23 p
or by reparametrizing t:, amore robust version:
_ sz b21 b22 QO b21 b22 g
[x vy Z]= +t4c, ¢ c]- G, -
b, et by, 2
Alternatively, we can generate aray starting at the near clipping plane:
koo o], o by b] o o ol
Cu e b23 o 4]

[x y z

or amore robust version:

[X y Z]:M'Haabzo o bzz:|'bze;[u](3
W e a

L L

This corresponds to the normal perspective camera.

Case2:bpz=0andc, * 0.
Simple division resultsin:

_[Cx G Cz]"'k{bzo b, bzz]
x v 4= .

With the parametrization:

Kk
t=—

C,,

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading



we get:
x v 45 s, b, o,

This case corresponds to a non-perspective (orthographic, oblique) camera. Since the eye
point of a non-perspective camerais at -¥, thisray starts at the near clipping plane.

Case 3: byst Oandc, =0.
Wefind two pointsat k=-¥ and k= 1:

_€b, b, byl
Xy Yy Zy|l=772 = ==,
P v 2] &b, b, bsH
- ébZO *C, bll +Cy b22 -'-CZL"l
b = T T
yielding the ray:
oy Aol B bl o o o
b23 b23

This does not correspond to any type of camerawe normally have in computer graphics,
because it blows up at k=0.

5.2. Ray from Screen Point #2
We reparametrize k by the Mobius parametrization:

_ 1
bk +c,
and find that:
K = 1- c,t
bt
Thisthen yields:
b ..
[x y Z]:[M +t§cX G, Cz]' %wg
23 -

5.3. Ray from Screen Point #3
With the M 6bius parametrization:

k
bk +c,

gives
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k:it
1- bt

[X y Z]:%]Hg[abzo b,, bzz]'bzau
e

5.4. Ray from World Space Point
Again, we use the A-1 matrix, where A-1 maps from screen space to world space:

and

L0

Q I G

w yw zaw wl=[i j k ZA™
Here, we find that the world space points are given by:

iy 2]<[%* B bk vby by b bkeby B vbit bk b]
Y i + by + bk * by

where
B=A".

We aready have a point on the ray; the direction may be found by taking the tangent with
respect to k:

1(xyz) 1
(Ty):\,_v[bzo_ beX b, - by by, - bZBZ]

where the bj;’ s are the elements of the A-1 matrix, w is the [common] denominator, and
we have made use of the quotient rule for derivatives.

Scaling by the common denominator (w), we arrive at:
[X y Z] =[Xo Yo Zo] +t([b20 b, bzz] - bz3[)§) Yo Zo])

where (xo, Yor zo) Is the given world space point.

6. Determining the Ray Wavefront

The ray wavefront is an enhancement of theray, in that it also carries with it vectors
corresponding to a unit step in screen x and y as well as curvature of the ray wavefront
that indicate how the ray grows with distance.

Given the ray:

C, c,|] & c, C 0
[XO X XZ]:[+]+tg[b20 b bzz]'bzs%;

its derivatives with respect to screen coordinates are:

21
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ﬂ(X, Y. Z ) (1 bt ) I & by bozq_ e:bos U| . G Cz|
ﬂ(i 'J) Cy g% b, blZH g]lsH Cy,
At the near clipping plane (t 0), the derivatives are:
ébOO bOl h)Z U_ éb)B U| Cx Cy CZ I
@)10 b, b, é g:)lB é Cy
C,
Theray normal (i.e. direction) is:

c, C C
g:[bzo b,, bzz]' bzaw

ol SN et

J=

C,

and its normalized direction is computed as:
_9
ld

The derivatives of thisray direction with respect to the pixel coordinates are:
o 1d g Tl
— " 7. — - 7. N
fi :“Munzﬂung:ﬂun 1(i.1)
() d lol
The derivative of the numerator is:
19 _'b23 eboo by t:bzl‘:l_ étbsl:dcx C C|
ﬂ(i’j) Cv 1 g)lo by, buH gjlsH Cw
and that of the denominator is:
Mg _ | AR | n_1_ 1
0.0 70,9 =200 o) = g e)
where

u
y=-by,J
b

1 ‘ﬂg 9 - M9 - T

. = — =-2b.J
T A o A TO) A T e
s0 that the derivative of the denominator is:

Mgl T
— 2b,Jg" ) =- b,.,Jn
70.) =g (-2=9 ) = b
and the desired derivatives of thenormal is:
'ﬂ.n. _- b,.J - ( b,.Jn" ) _b, (Jn N J)
1G,7) ld T |d
Curvatureis given as:
) dn «dt
dt e dt
Yielding:
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y _%{J- Inn} ]

ld 3
_byJeJ-JIn"neJ’
lal JeJ

_by i Jn"-(n")u
ol 188 3.3}
where the dot products are taken separately for i and j (a slight abuse of notation),
resulting in:

AN 2 .e
i (3 en)U I (3. en) U
klzgil_(l )y k]:%il_(l )y
7 Jisdi p ld; J%9ip
7. Determining the Jacobian of 2D Parametrization to Screen Space

7.1. Jacobian by the Method of Tangents

To perform anti-aliased texture-mapping, we seek the jacobian of parametrization-to-
screen space:

1(u,v)
10, j)
Let us represent the projective matrix A by the function a(¢), which maps points from
world space to screen space:
a:R°® R’
or
a:(xy.2 (i,j)
We will represent the parametric surface by b(e),
b:R*’® R’
mapping
b:(uv) - (xy,2)
We first construct the composition function c()
c:R*® R?
mapping
c:(uv)e(i,j)
as such:
c=aoh

quv) = ab(u,v))

From this, we evaluate the jacobian:
e _ 9(.i)
M(u,v)  9(u,v)

or
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and invert this 2x2 matrix to yield the desired jacobian:

T(uy) _én(.i)u’
1(.j) &n(uv)H
The quantity
10, j)
T(u,v)
can be computed as the product of jacobians:
16,0 _1(xv.2) ()
Twy) 1wy |y, 2 106y.2)

(%0, Y0,20)

The former istrivia to compute, sinceit isthe jacobian of tangents. The function a(e),

which maps modeling space to world space, is a simple projective transformation:
| = BX taY +aZ +ay _ R (X 2)
QX +azy tazz+ay,  P(xvz)
_apXtayy+azray _ p(xyz)’
QX +azy taZ +ay  Py(xY.2)
so its derivatives are computed by the quotient rule, e.g.
. p M - p m % - |& .
T_oax ax - Ix Ix 8- 18
T ps P, ot
etc., yielding the jacobian:
.. eaoo aos S - ja03‘
10,0) _
ﬂ(x y Z) p3 ealo 3 all ai
&Qo' |323 & - JazaH
Thisisthen multiplied by the tangent jacobian,
T(xyz) _& Y% &u
Tuv) & vy zk
to yield a2x2 matrix that is the inverse of the desired jacobian:

23, - 1a - jagU
10.0) _ 18 Y zucf? o e
Twv) po8, ¥ z8° 7 7
? %zo"azs y - 1323H
By inverting this, we find the desired result as:

j . N
1(uy) _ Iexu v zig 'Zfs Z:j:ij“
10.0) ™ Sx Y,z T T Tl

( ) H%azo' 'aza Ay - Jazatl)

7.1.1. Separ ation of the Screen Map
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Suppose that the screen mapping is separated from the rest of the transformation, or
maybe an additional screen mapping is applied. In this case, we apply another function:

doaohb
where d(*) is the new screen mapping. This can be represented by a matrix similar to S:

éd,, O O Oy
_€é0 d, 0 O0d
€0 0 d, ou
8d30 d31 0 1H
The concatenation of jacobiansis:
16.0) _1(xv.2)
Tuv) WY k2 T0%2), 0 1K)

where (k,l) is an intermediate 2-D coordinate system.
The last screen jacobian is:

D

(k1) 1(.J)

1(i.)) ¢ Ouw
(k) €0 d,H
anditsinverseis;
i él ol
(k) _ &G0 ey
16.)) &1kNH eq Lo
é dy,

Computing the desired jacobian, we have:
fefe oyl
T(uy) _éf(.j)u

1(,j)  &(uv)d

_ (k) 1(.)"
a0V, Tk)E

_a)iteney O
g-[(k,l)H g-[( ' )(xo,yo,zo)Llf:
él u

_ &dy, af(u.v)
éo _1lfl'ﬂ(k,|)
é d;

i.e. the screen mapping affects the jacobian only in the sense that the input is scaled by
the pixel resolution in each direction.

Therefore, the complete computations for the texture-to-screen jacobian, with screen
transformation filtered out, is:
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é1l Uj . 1
— oYl - k - lay, U
Tuv) _ ey alé Y zqua"" s G Ry
) " P, 1.,'e aiO'kais an"aisW
1(.j) 6o 208, ¥ zH;
&  dyql o~ Kay - laylh

Note that (k, ) (from the intermediate coordinate system, e.g. frustum space) isused in
computation of the rightmost matrix, not (i, j) (screen space).

7.2. Jacobian from Projective Mappings
Given a projective mapping

d v wu
[0 v W=[i ] 1]6}]1 ‘:’j V:VJU
& Vo wi

mapping from screen space to projective texture space, the Euclidean coordinates may be
determined from:

u Y

Uu=—,v=—=

. - W . W . . . . -

The jacobian matrix of (u,v) with respect to (i,j) may be determined from the quotient
rule for partial derivatives, i.e.

Tu _18&_]0_\7vﬁx- Uw,

ix fxewo e
yielding:
fluy) 1 R - O W - W0 160 - ul G- vy
10,j)) W gV, - Gw, W, - \7\7va wéi - uw, V- ijg
If the perspective is not al that extreme, it is possible to approximate this as:

_Tuy) 1 el Vi

however, it is recommended that this not be used in general circumstances.

J=

7.3. Jacobian from Texture-Screen Correspondences
Given a correspondence between points in texture and screen space:

[uo Vo] « [io jo]
[ v« [i i

[, v« [i, i
we'd like to compute the texture-to-screen jacobian matrix, so that we can do anti-
aliasing properly.
We could naively set up an affine transformation and compute the jacobian, but we know
that we want to use projective interpolation instead of linear interpolation, so we can do
better.
From [Heckbert-Moreton], we know that an advantageous way to interpolate texture for
scan-converting is to interpolate the parameters p/w ... and 1/w linearly instead of p
linearly, and then divide the interpolated parameter p/w by the interpolated 1/w to get a
projectively-interpolated p.
So, we perform asimilar “trick” by generating a projective map for:
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[up /Wy /vy L] « [ig o]

[U1/W1 v/iw Y Wl] « [il 11]
[wiw, viw, Vw]« [i, j,
where the w' s are the same as those used to divide (x,y,z) when converting from

homogeneous to Euclidean coordinates. We use familiar linear equation solution methods
to solve for the 3x3 projective mapping matrix:

e v, wdu
[u/w viw Uw=[i j J& v, wU
8Jk Vk WKH

and then use rational derivative techniques to find the jacobian of this projective
transformation.

If there are more than 3 points, we suggest computing a projective mapping at each point,
using its two nearest neighbors.

8. Determining the Jacobian of 3D Parametrization to Screen Space
We need to find the projection of the pixel onto the surface and measure its size.
We do this by first finding the derivatives of world space to screen space at a point in
world space.
Given the mapping A, which takes us from world space to screen space,
[il 1 K 1]=[x y z 1A
its inverse maps from screen space to world space
[w yw 2w w]=[il jI Kk []A™
The derivatives we desire are

ﬂ(X,y,Z)_|_‘le:boo by, bozl:,l_ (:ibos‘ y
T Wi b b Ed A

A—l

where

If we start out with (x,y,z,1) and transform by A to yield (il, jI, ki, I), and then transform
back with A-1to (x,y,z,w), we should have w=1. | is given by:

&z U
éa,;U
| =[x z 1|5 -
e e
&
Thisyields:
I €845 L1l
‘ﬂ(x,y,z) éti u I gﬁmu'eboo By Dot o U
—— =, .={|X z Ul  wvia oA AlX Z
W) g8 Y 7 Y Ve, b, ng od v
)

&azsth
The projection of the tangent vector t; in the direction ty onto the surface with normal n
implies

tpen= (ti +atk)- n=0
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s0 that

yielding

e Tt u
N
where 1 isthe unit tensor of rank 2. The formulafor the projection of t; is analogous.
Multiplication of the projected vectorst; and t; by the jacobian matrix
M(u,v,w)

T(xy.2)
yields:

9. Determining Affine Maps

We will be primarily concerned with maps from 2-D to N-D, or 3-D to N-D, so we will
specifically derive equations for these, although the methods used can be equally applied
to affine maps from M-D to N-D.

For a2-D to N-D affine map, we have:

étli t ... tNiU
[p B . p=[ i 1]<A§tlj ty .. thl'{
&, Lo o tyl

where the right matrix represents the affine map. If we have 3 such correspondences
between (p1, p2, ..., Pn) ad (i, j), the above relation should hold for these three
simultaneoudly, i.e.,

€y Pp - Pl & J, 1B t, ... tyU

ST PR UL P A TR SRR Y

szl Py - pZNH 8' 12 1@10 Ly .. tNOH

The affine mapping matrix may then be solved for by inverting the (i,j) matrix:

[ON
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. ~ . -1, N
a],- t2i . tNi u a, J 1u € Pz -+ PonU
?11' L, -ty u = ?il I 19 ?pu P - P U
810 t20 . tNoH 82 jz 1H szl Pr -+ P H

For the 3-D to N-D map, the corresponding solution is:
éiO jO k0 10‘1ép01 pOZ pONU

é Uy tyu
&, t;, ... tyu & j k 1 ép; p, ... pyu
§1k t2k tNklEI_?iz jz kz 1[,] ?pu P - ple:,l
810 t20 tNOH 83 j3 k3 1H &1 p32 pBNH
which relates (i,j,K) to (p1, p2, ..., Pn) asfollows:
étli t2i 1:NiL\J
T a, t, .. tu
O N I 1](?“ b ot
Bo o - Gl

9.1. Determining the Jacobian Matrix of an Affine Map
The jacobian matrix of an affine map is a linear map that can be picked from the affine
map’s matrix representation by eliminating the latter’ s last row. However, it is not
necessary to compute the entire affine transformation if only a subset (the jacobian
matrix) isdesired.
For 2-D, we have:
ﬂ(pl,pz,-..,pN)_étli t,, ... tNiu_éDio Djodlém01 Do, .- Dognu
ﬂ(i’j) glj tZi tNJH gDil DlH @3[)11 Dp12 mNH
and for 3-D we have:
~ N 7~ . -1, <
ﬂ(plpz p) e, L ... tyu eb, Dy I:]<0U p,; Do, ... Dol
- =&y ty ... tyU=eDip DO, DkUeDp; Dp, ... DplNl;J

(.. k) A o -
alk t2 k e tNkH @'2 D.|2 D(ZH a:)le q)ZZ te EmZN H
These equations use the inverse of amatrix of order one less than that required for an
affine map.

10. Determining Projective Mappings

10.1. 2D-2D Projective Mapping from Screen Space Correspondence
From [Heckbert89%] | ye can compute the projective mapping between a unit square and an
arbitrary quadrilateral in (x,y). Thisis given by the projective frame:

€X - Xo+0% Y- Y *tQy; gu
=8 - Xothx, Y- Y, +hy, hU
g X Yo 1H

R

projective

where

[Heckbert89a] Heckbert, Paul, Fundamentals of Texture Mapping and Image Warping, master’s thesis,
Department of Electrical Engineering and Computer Science, University of California, Berkeley, 1989.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 19



é X Dxg, Dxy, é j
[] [o]
_ ay Dy, h= Dy, A
Dx, stz" Dx, DXy,
Dy, Dyx, Dy, Dy
and
[o]
Dx, =% = %, DXy = X5- Xy, a X=Xy- X tX - X,
[o]
Dy, =¥i- Yoo Dys, =Y5 - Vs, AY=Yo- itY.- Vs

Alternatively, we note that the computations for g and h resemble the ratio of two cross
products:

- DOl ] D32 h - D12 ’ D03
D12 ’ D32 Dl2 ’ D32
where
Du=Po- Py D= Po- Pss Dy =P - P Dy =P5- P,
If a x=0 and @ y=0, the(x,y) quadrilateral is a parallelogram, and the matrix
reduces to an affine matrix:
€ - Xy Yi-Y, Ou
Raffine = ?XS =X Y Y% Ol;j
& X Yo 1H
These 3x3 matrices represent a projective mapping from texture to screen space as.
[x y q=[u v IR
We can do asimilar sort of mapping from a unit square to an arbitrary quadrilateral in

(uv).
(x3, y3, u3, v3)

(x2,y2, u2, v2)

(x0, y0, u0, v0)

(x1, y1l,ul,vl)
If we call this mapping R, and the previous mapping Ry, then we can compute a
combined mapping from (x,y) to unit square to (u,v) as:

[x y q=[s t 1R,
[u v w=[s t 1R,
[u v w=[x vy JR*R,=[x y 1R

or .
R=RYR,.
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10.2. 2D-3D Projective Mapping from World Space Correspondence
We can compute the projective mapping matrix from 3 points R by Gaussian elimination:

& Yo LU @y V5 1y, ry fpU
& vy zl=% v 1%, n, n,U

8(2 y2 ZZH %JZ V2 1@‘ZO r21 rZZH
We will later embed this into a 3x4 matrix as follows;

& Yo % U &y v lE, Iy T, OU
& v oz 1U=&, v 1{"?(10 h, fp, OU

S(Z yZ ZZ 16 %JZ V2 ]'H% 20 r21 I"22 1 H

With 4 points, we compute a projective correspondence between (X,y,z) and a unit square.
We then concatenate that with a mapping from the unit square to the given (u,v)’sasin
the previous section.

The projective mapping from four coplanar pointsin (x,y,z) to the unit square is given by:
& - % tO Vi-YotO% Z-3%+0z gU
OG- %+ Ys-yo+hy z-7+hz ht

B X Yo Z 14
where
g= d- s, ’ h= d-r,
n+s -d n+s-d
r = d12 d13 — dll d12 d - dll d13
" d32 d33 ’ d13 d32 , d13 d33

d,=v,-v,, d,=v,:Vv,, dy=Vv,-V,, d,=V,:V,
V=X % Y- Yo Z- 7]
V=X X% Yom % - 7]
Va=[X%- % Y- Yo Zs- %]

We can aso generalize our 2D resultsto 3D, yielding an alternate expression for g and h:
g= (D01 ’ D32) ’ (D01 ’ Dos) — (D12 ’ Dos) ) (D01 ’ Dos)
(DlZ ’ D32) ’ (D01 ’ Dos) (D12 ’ D32) ' (D01 ’ Dos)
where we have chosen D, * D, asthe quadrilateral normal, to give identical results as

the previous expression. Another equally valid expression uses D,, " D, as the
quadrilateral normal, and results in the slightly simpler expression:
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(D01 ’ Dsz) ) (Dlz2 Dsz) h (D12 ’ Dos)' (D122, Dsz)
|D12 ’ D32| |D12 ’ D32|
In the graphics pipeline, homogeneous vectors are transformed by modeling (M), viewing

(V), clipping (C), and screen-mapping (S) matrices, whose concatenation is represented
by the matrix A. The mapping from texture to screen coordinatesis then:

X' =XxMVCS=uRMVCS
— ——

A A

g:

If we then toss out the resultant third component with the matrix P:
gl 0 Og
@ 1 0u
P=_ .
€@ 0 ou
& 0 1§
we have

X¢=xMVCSP =uRMVCSP =uB
A B

If we then toss out the composite transformation is:
xe=[i j h=uRAP=[u v w8

1x33x44 x44x3

where
e, hy hyu
B = %)10 bll b12 lzl
8)20 bZl bZZ H

Thisis aprojective mapping that takes parametric space to screen space. Itsinverseis
more useful for texture mapping, because it takes screen space to parametric space.
However, since B specifies a projective mapping, its adjoint can be used instead of the
inverse [PENNA]. In fact, the adjoint is preferable, because it always exists, whereas the
inverse does not always exist. The computation of the adjoint is relatively simple:

. é"lx \7x qu é)22bll - b12b21 b02b21 - b22bm b12}:)01 - bozbn u
BadJ = ?‘]y \7y \TVy l:l = ?alzbzo - bmbzz bzzboo - tbz bzo b10boz - blztbol:I
g]h \7h WhH &)lObZl - bzo bu bzo b)l - t:bo b21 boobn - blo h)lH
Parametric coordinates may then be obtained from screen coordinates from first
calculating:

[6 ¥ W]=[i j 1B™
and then dividing by w:

10.3. 3D-3D Projective Mappings
We desire to find the 4x4 projective transformation that maps the unit cube to a frustum,
as found in a camera specification.
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p4

e
L

p2 p0

Assuming that it has the form:

X - Xt yi-yotfy z-z+1fz fy
- Xt 0% Y- Yot Oy, Z-2Z,+9z gu
8%t Y- Yo +QYs Z-Z+hz hU
g X Yo Z 1

R

we find that f, g, and h are given by solutions to the equation:

- X X - X X - XUEfU EX X +X5- X, - 2X%,U
Y Yam o Yu- y3lzégl]:§y1 Y, v Y3 Y, - Zyol:,I
-z -2 z-ztBM Ez+z+2-7-27H

MDD
L

10.4. Determining the Jacobian Matrix of a Projective Map
In order to find the jacobian matrix for a projective map, we invoke the quotient rule for
derivatives.

11. Functional Parametrization

We now address the issue of applying a parametrization (or reparametrization) to a
surface by means of afunction. In the purely general case, we have

(uv) = f(N)
where N is the neighborhood of a point, and contains:
* position
* normal
* tangents

* [other] parametrizations, etc.
When the parametrization is afunction only of the normal, then we have [a variant of]

reflection-mapping.
First, we consider when the parametrization is afunction only of the position.

11.1. Parametrization as a Function of Position
Here, we have:
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(uv)=f(xy.2
Some obvious candidates are projection of the parametrization of a circumscribing

cylinder or sphere onto the object. The problem we address here is how to determine the
tangent vectors. We will assume that we know the normal at each point.
We can compute the jacobian
a, Vvu
ﬂ?iu;/vi) =%y, v
v SJZ VZH
but what we want is sort of the inverse of that, namely:
1(x,y, 2) _& Y% AU
Tuv) & vy zH
We introduce another component into the function so that the jacobian is square and can

be inverted. If we choose a component that it is collinear with the normal, then if we
invert the jacobian, the resultant u and v derivatives are the desired tangents.

For cylindrical and spherical projections, one such suitable value is the normal distance
from the center of projection:

(uv,n)= f(x,y,2)
Thisisillustrated in the diagram below for acylindrical projection:

We choose a class of functions that have the normalized normal asits gradient.

From the jacobian:

a, v, nu
’ ln A o
Heod-a o
i 8'IZ VZ r]Z
we compute itsinverse:
&, ¥, z0 &, |v, |[nd
Mxyz) .
_eX/ yv Z\/u_q'ly Vy r]yu
T(uv,n) s— Y. A .
an yn ZI’IH 8JZ z rlZ
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Note that the top row is the derivative of (x,y,2) with respect to u, holding vand n

constant. Theinsight into thisisthat when n is constant (and equal to zero), we arein the

tangent plane.

This allows us to now toss away the derivatives of n, yielding the tangentsw.r.t. u and v:

T(xy.2) _& Y% 2zl
Tuv) & v zb

11.2. Cylindrical Mapping

Without loss of generality, we assume that the origin is the center of projection.

z

.y

Here, the projection equations are given by:

u=1- z
= = -1@_6
v =atan2(y,x) = tan o

which has the jacobian matrix2:

e y U
é X +y?(
Q@anéo %X ¢
xyz) & Y
1 "o U
e U
€ d

11.3. Spherical Mapping

The origin of the sphere isthe center of projection:

2This was computed in Mathematica™ with Outer [D, {1-z, ArcTan[y/x]}, {x, Y, z}] and transposed.
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& 0

u:-atanz(z, x2+y2):tan’1(; z_-
“ o

— — 1o 190
v =atan2(y,x) = tan o

whose jacobian matrix is3:

PEHY (P +y +27) X +y
(X2+ yz +ZZ)
11.4. Cube Mapping

Here, we project the surface point onto one of the eight cube faces. In other words, the
first part of the parametrization is to determine which of the 8 pyramids a particular point
belongsto.

© Xz y "
T
Tuv) _ o yz X g
‘ﬂ(x,y,z) & U
é a
g ¢

AN
AN
y N
AN
* -
- /
Z<_ \ 4
X

In the above diagram, suppose we use the function

x 1 y 1
=— +—, V=—+-—
2z 2 2z 2

u

for the |eft face. This gives the jacobian4:

é 1 o U
é 2z G
fuv) _g 9 L
fbex2) e x
g 272 272H

The other faces would have different but similar parametrizations and jacobians.

3Likewise, Mathematica gives this with Outer[D, {ArcTan[z/Sqrt[x*2+y*2]], ArcTan[y/x]}, {X, Y, Z}]
and transposition.
4Mathematica: Outer[D, { (x/(2 2))+(1/2), (y/(2 2))+(1/2)}, {, y, Z}] transposed.
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11.5. Planar Mapping
Thisisaplanar projection, such as:

x 1 y
u=—=+-, v==+
2 2 2

NIl

which has the jacobian:

&
1Y) _g Ly
Teyz) o 24

g ¢

12. Wavefront Tracing

[Mitchell and Hanrahan] and [Glassner] give the equations for the propagation of aray as

it interacts with a surface.

n®

qt
1

n
The reflected ray is given by:

n® =nt +2cosgn‘
— n(i)_ 2(n(‘) . n(s))n(s)

and the transmitted (refracted) ray is given by:
n® =hn® +g®

where

g =h cosq, - \/1+ h*[cos’q, - 1]

:h(n(i) : n(s)) +\/1+h2 (n(D : n(s))z- 1]
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[Mitchell and Hanrahan] extend the results for rays to propagating wavefronts. A
wavefront is represented by an orthonormal frame and two principal curvatures:

- U

The wavefront propagates in adirection n, and has two principal directionsu and v, each
with acurvature k, and k..

For an orthographic camera, the curvature of the wavefront iszero in al directions at al
distances:

k=0
For a projective camera, the curvature in al directionsis constant at a given distance:

1

Wavefront propagation by transfer through free space is given by:

k,
- dk
K,
- dk

kg=

k g=
1

where d is the propagation distance of the wavefront.

Reflection and refraction are more complicated. First we compute a new reference frame,
and compute the wavefront curvaturesin this new frame. The direction

n(') ¢ n(s)

is tangent to both the incident wavefront and the surface. Of course, the denominator goes
to zero if the incident wavefront and the surface normal are collinear, so in this case, any
vector in the common tangent plane may be used asthe u” vector. Although not necessary
at this point, the vector v” is given by:

ve=(u" ud v+(u-udv=(u- ugv- (veudu
We can find the curvatures of the wavefront in this direction with Euler’ s formula:
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k. =k, cos’q +k, sin’q
k,.=k,sin’q +k cos’q
kuw¢ = (k u- kv)CO$S-nq
where the trigonometric terms can be computed with:
cosq =ug¢eu
sing = ugs v

We next need to determine the curvatures of the surface in this new frame. For a
parametric surface, we have the parametric tangents x,, and x,. We can determine the
coordinates of the new frame in the surface' s parametric coordinates with:

X, X, X, * X0
ug=[utx, ugex |z’ * " Y
8>(V.)(U XV.XVH
, -1
’ Y @(V.XU XV.XVH

where u”” are the 2-coordinates of the u” vector in the surface' s parametric coordinates.
The inverted matrix on the right is necessary because the surface’ s parametric coordinates
are not orthonormal. An orthogonal vector to u” in the surface tangent planeis

The curvatureinthe u™ direction is given by:

K,e=u®@ud

where D isthe curvature tensor of the parametric surface. The metric tensor is not needed
because the u”™” vector is a unit vector, as measured in world space.

We need to compute the ky, and k,, curvatures as well, in this new frame. A vector
orthogonal to the u” vector in the surface tangent planeis

u¢ n®

so0 that we can transform the curvature tensor as;

D¢= UDU"
where
é ue T T s U.Xu Xu.xvdl
= . X X o |a -
Y & n(s)g v ]Exwxu X, *X,H

We now have enough information to determine the curvatures in the new frame. The
curvatures for reflection are:
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k" =k 9 +2cosgk ,©
kuv(f) = _kuv(')_ % ©

uv

k )=k, +(2/cosq k1
and those for transmission (refraction) are (Mitchell-Hanrahan have an error here):
ku(t) - hku(i) +g<u(5)

kO =h Xy 0y I g ©

uv uv

cosq, cosq,
Kk, :h&zq‘kv(" —9 k©
cos’q, cos’ g,

where the cosines are given by:

cosq, =- n® - n®

cosg, =- n{¥ . n®

All that isleft isto find the principal axes and principal curvatures.
Eigenvalue analysisyields:

K _ku-l_kv-l_\lzlkuvz-i-(ku_kv)2

! 2
ku+kv_ \/4kuv2+(ku_kv)2
k, = .
é ok v
W, =g = = 1
- koA Hk-k)T g
é 0
w,=é '2(;” - 1y
gk, -k Ak, 2+ (k- k)T ¢

if kyy iszero, then we already have the principal axes and curvatures, otherwise arotation
of up to 45° is performed. The new axes are given by w1 and ws.

12.1. Anti-Aliasing Specular Reflections and Refractions using Wavefront
Tracing

We want to trace the shape of a pixel throughout the system as it reflects from and
refracts through surfaces. In short, the size of a pixel variesinversely with the curvature.
At the last surface, the pixel is projected onto the surface and appropriate anti-aliasing is
done.

(more detall.....).

First, we need to evaluate the ray wavefront on the surface. Recall that it is given by:
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[X y Z]_[Xo Yo %o +t([bzo b, bzz]' bz3[)% Yo Zo])
At the point (Xo, Yo, Zo), (i.€. t=0), the derivativesw.r.t. i and | are

€5 L0

i
_II,. eaiaul |eboo h)l bozU é:)os
=ik %o Jo die” L) g gt % Z°]?$
.
i Saﬁﬂo
The normal of theray is given by:
~ n
In|
where

n= [bzo b, bzz] - bza[xo Yo Zo]
and the curvaturesinthei and j directions are given by:

i_b23ll- (‘].n)g ‘_bzs (‘]i.n)g
M 323 a ||A 33

13. Appendix: Norms for Jacobian Matrices

Hereisastudy of several norms for jacobian matrices. Note that these formulations are
for jacobian matrices that are expected to be multiplied by row vectors, not column
vectors as found in textbooks.

:a"j 1 = miaxé.' |a"j |
i

|l * 2l + (B + )" 4w - And)
2

:aij 2=miaxl| il; "[ai ]2x2 2

- Q 2
—miax a a;
i

3,

Heckbert

[ _ [o]
3 ]], =maxa fa|
The L1 norm is the maximum of the sums of the absolute value of the rows (max L1

norm of rows).

The L¥ norm is the maximum of the sums of the absolute value of the columns. (max L1
norm of columns)

The L2 norm is the maximum eigenvalue of the matrix.

The LHeckbert norm is the maximum of the Euclidean norms of the rows (max L2 norm
of the rows).
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From outer to inner:
L

L,
LHeckbert

L,

From outer to inner:
L

L,
LHeckbert

L,

& &
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From outer to inner:

Ll’ L¥’ LHeckbert
L,

From outer to inner:
L, L

LHeckbert

L,

N2
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From these pictures, we see that the L; norm is the most conservative, in that it always
yields the biggest circle. The Ly norm is not far from it. Both of them always
circumscribe the ellipse. They are both quite anisotropic in that the resultant diameter is
larger for an inclined ellipse than an upright (or flat) elipse.

The L 4eckbert NOrm solves the anisotropy problem, and resultsin a diameter that is very
close to the length of the major axis.

The L, normisalso relatively isotropic, and it strives to achieve a balance between
aliasing and blurriness. The areainside the ellipse and outside the circle represents
aliasing; the areainside the circle and outside the ellipse represents blurriness.
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