
The Differential Geometry of
Texture-Mapping and Shading

(work-in-progress)

Ken Turkowski
Interactive Media Lab

Advanced Technology Group
Apple Computer, Inc.

5 October  1993
(printed February 10, 1998)

1.         The Differential Geometric Neighborhood of a Surface
For shading in three-dimensional computer graphics, it is useful to abstract the geometric
properties of a surface at a point on that surface. The collection of properties we call the
surface neighborhood, or simply the neighborhood.

1.1. Position
Given a point on a surface, its position or (x,y,z) coordinates can be found. It is usually
already given.

1.2. Normal
The normal to a surface can be found for orientable surfaces. For parametric surfaces, that
can be found by taking the cross product of the tangent in the u direction by the tangent in
the v direction, and normalizing.

For implicit surfaces , f x, y,z( ) = 0, the normal can be found by computing the gradient,

g = ∇f , and normalizing: n = g g .
Occasionally, there are singular points on a surface where the normal is multiply-defined
(as at a crease or cusp or the apex of a cone), but we can always disambiguate them by
association with a subsurface.

1.3. 2D Parametrization
Parametric surfaces are vector functions of two parameters: x, y, z( ) = p u, v( ) . Sometimes
auxiliary parametrizations are introduced, e.g. to assure that the parametrization lies in
0,1[ ] × 0,1[ ], which is a practical convention used for texture-mapping.

1.4. Tangents
Most surfaces we work with in computer graphics have some sort of parametrization,
either natural or assigned. We can either evaluate the parametrization at each point or
establish a consistent way to compute it. Either way, we can also evaluate the tangents to
the surface in the direction of increasing parametrization. If the position is specified as
x=(x,y,z) and the parametrization is specified as (u,v), then the tangents are given by:

∂ x, y, z( )
∂u

=
∂x

∂u

∂y

∂u

∂z

∂u
 
 

 
 

= xu yu zu[ ]
and

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 1



∂ x, y, z( )
∂v

=
∂x

∂v

∂y

∂v

∂z

∂v
 
 

 
 

= xv yv zv[ ] .

When these tangent vectors are stacked together to form a matrix, it is called the tangent
Jacobian matrix:

T =
∂ x ,y ,z( )
∂ u,v( ) =

xu yu zu

xv yv zv

 
  

 
  =

xu

xv

 
  

 
  

1.5. Second derivatives and the Hessian Matrix
We can also take second derivatives:

H =
∂2 x, y, z( )
∂ u,v( )2 =

xuu yuu zuu[ ] xuv yuv zuv[ ]
xvu yvu zvu[ ] xvv yvv zvv[ ]

 

  
 

  =
xuu xuv

x vu x vv

 
  

 
  

This arrangement of second derivatives is a tensor of rank three called the Hessian. For
the surfaces we are interested in, the skew diagonal cross derivatives are equal, so it is
only necessary to store 9 numbers, not 12.

1.6. Metric Tensor or First Fundamental Form
Further derivatives of the surfaces are rarely used, however certain functions of these
derivatives are used. One is the metric tensor or first fundamental form:

G = TTT =
xu • xu xu •x v

xv • xu xv •x v

 
  

 
  

which is used for measuring distances along a curve on the surface:

s = ˙ u G˙ u T

t0

t1

∫ dt

the differential unit of measure, ˙ u G ˙ u T , must be used because the (u, v) coordinates do not
lie in a Euclidean space.

1.7. Curvature Tensor or the Second Fundamental Form
From the second derivatives, we can compute the curvature tensor or second fundamental
form:

D = n • H =
n• xuu n • xuv

n• x vu n • xvv

 
  

 
  

which is used to measure normal deviation from the tangent plane in the direction ˙ u :
˙ u D ˙ u T .

The normal curvature in the direction ˙ u  is given by:

κn =
˙ u D˙ u T

˙ u G˙ u T
.

1.8. Gaussian Curvature
The Gaussian curvature is given by:

K =
D
G

1.9. Normal Curvature for Implicit Surfaces

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 2



Normal curvature can be computed for an implicit surface f(x,y,z) with
[Hanrahan&Mitchell]:

κn = −
dx • dn
dx • dx

where dx is a differential direction in the tangent plane, and dn is the differential normal,
given by:

dn =
g •g( )I − ggT( )( )dg

g • g( )
3
2

where g is the gradient of f (g = ∇f ) whose differential is:

dg = Hdx =
f xx fxy f xz

f yx fyy f yz

fzx fzy fzz

 

 

 
 

 

 

 
 
dx

1.10. Texture-to-Screen Jacobian Matrix
In 3D computer graphics, we visualize geometric models by projection through a camera
onto a pixel grid on the screen. The jacobian matrix of the coordinates in parametric
space (u,v) to the coordinates in the pixel grid (i,j) gives us an idea of the shape of the
pixel as projected onto the parametric surface.

J =
∂ u,v( )
∂ i, j( ) =

∂u

∂i

∂v

∂i
∂u

∂j

∂v

∂j

 

 

 
 

 

 

 
 

=
ui vi

u j v j

 

  
 

  

The Jacobian matrix maps the square shape of a screen “pixel” into a parallelogram.  In
order to adequately represent the texture image on the screen, all of the texture pixels
within this parallelogram need to be taken into account when calculating the value of the
screen pixel.  In the general case, the  Point-Spread Function (PSF) to be used for filtering
will extend slightly outside this area to provide continuity in color from one pixel to the
next.
For a pixel of unit radius, the function

f θ( ) = cosθ sinθ[ ]J
traces out an ellipse in the parametric space corresponding to the projection of the pixel
onto the surface.
A square pixel transforms into a parallelogram in texture space:

Q =

1
2

1
2

1
2 − 1

2

− 1
2 − 1

2

− 1
2

1
2

 

 

 
 
 

 

 

 
 
 

J

where Q is the parallelogram in texture space.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 3



1.11. Projected Pixel as a Texture Rectangle
While this jacobian matrix itself can be useful for anti-aliasing texture-maps [Heckbert],
other texture-mapping algorithms use derivations of this. The summed-area technique
[Crow] approximates this ellipse with a rectangle, and the MipMap technique
approximates this with a circle. The rectangle is computed as:

∆u = ui + u j

∆v = vi + v j

1.12. Projected Pixel as a Texture Circle (or Square)
and the diameter of the circle is computed as:

d = J
for some suitable norm. Some of the commonly used norms are given below and
evaluated in the appendix:

aij[ ]
1

= max
i

aij
j

∑

aij[ ]
2

= max
i

λ i ; aij[ ]
2 x 2 2

=
a00 + a11 + a00 + a11( )2 − 4 a00a11 − a01a10( )

2

aij[ ]
Heckbert

= max
i

aij
2

j
∑

aij[ ]
∞

= max
j

aij
i

∑

aij[ ] aij[ ]T

2
=

a00
2 + a01

2 + a10
2 + a11

2 + a00
2 + a01

2 + a10
2 + a11

2( )2
− 4 a00a11 − a01a10( )2

2

1.13. 3D Parametrization
To facilitate placement of solid textures, it is useful to have a 3D parametrization
different from that of the world space coordinates. Often, this is the modeling (local)
space coordinates, but it may be different for æsthetic reasons. In most cases, this
parametrization is an affine transform of the world space coordinates:

x y z[ ] = u v w 1[ ]

xu yu zu

x v yv zv

xw yw zw

xo yo zo

 

 

 
 
 

 

 

 
 
 

where (u,v,w) is the 3D parametrization.

1.14. Tangents of 3D Parametrization
We can define tangents with respect to the 3D parametrization as we did with 2D
parametrizations. If the relation with world space coordinates is an affine one, then the
tangents are simply the top three rows of the affine mapping matrix:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 4



∂ x, y, z( )
∂ u,v,w( ) =

xu yu zu

xv yv zv

xw yw zw

 

 

 
 

 

 

 
 

1.15. 3D-Texture-to-Screen Jacobian Matrix
For anti-aliasing purposes, it is useful to have the jacobian matrix of the 3D
parametrization to screen space:

∂ u,v,w( )
∂ i, j( ) =

ui vi wi

u j v j w j

 

  
 

  
This maps a circular pixel in screen space into an ellipse in parametric 3-space, or a
square pixel in screen space to a parallelogram in parametric 3-space. This can be used to
filter a texture anisotropically, to get the maximum sharpness in each direction.

1.16. Projected Pixel as a 3D Texture Sphere
When generating an anti-aliased solid texture, it is sometimes more convenient to filter
the texture isotropically. For this, we would like to reduce the above jacobian matrix to
one number. For this, the L1, L∞ or LHeckbert norms (as described above) are appropriate.

1.17. Ray
There is a ray that comes from the camera through the given position in space. With a
projective camera, all rays pass through the center of projection. With an orthographic or
oblique camera, no rays pass through the same point (except for the point at infinity).

1.18. The Geometric Neighborhood Data Structure
We can bundle all of these into a C structure:

struct SurfaceNeighborhood {
Point3D position; /* x,y,z */
Vector3D normal; /* nx, ny, nz */
Point2D parametrization; /* u,v */
Vector3D tangent[2]; /* ∂(x,y,z)/∂u, ∂(x,y,z)/∂v */
Vector3D hessian[3]; /* uu, uv, vv */
Matrix2x2 metric;
Matrix2x2 curvature;
float gaussianCurvature;
Matrix2x2 paramScreenJacobian;
Vector2D paramScreenRect;
float paramScreenCircle;
Point3D parametrization3D;
Vector3D tangent3D[3];
Matrix2x3 param3DScreenJacobian;
float param3DScreenSphere;

};
We have given methods for computing all of the quantities in this structure except for the
jacobian of parametrization to screen. First, we need to know something about the camera
transformation.

2.         Computing 2D Parametric Tangents for Polygons
Given the (x,y,z) and (u,v) coordinates for three consecutive points:

x0 y0 z0[ ] ↔ u0 v0[ ]
x1 y1 z1[ ] ↔ u1 v1[ ]

x2 y2 z2[ ] ↔ u2 v2[ ]

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 5



the unique affine mapping that is consistent with this mapping is given by:

x0 y0 z0

x1 y1 z1

x2 y2 z2

 

 

 
 

 

 

 
 

=
u0 v0 1

u1 v1 1

u2 v2 1

 

 

 
 

 

 

 
 

xu yu zu

xv yv zv

xo yo zo

 

 

 
 

 

 

 
 

The right matrix specifies an affine transform from (u,v) to (x,y,z), and may be solved for
with Gaussian elimination or L-U decomposition; this is recommended over inversion of
the (u,v) matrix because it is faster and more accurate. The top two rows of this matrix
are the tangents with respect to u and v.
We can optimize this a bit more, since we are only looking for the tangents, not the entire
transformation function. If we subtract the last row from the first and second rows in the
(x,y,z) and (u,v) matrices, we get:

∆x0 ∆y0 ∆z0

∆x1 ∆y1 ∆z1

 
  

 
  =

∆u0 ∆v0

∆u1 ∆v1

 
  

 
  

xu yu zu

xv yv zv

 
  

 
  

and after inversion, the tangents are given by:

xu yu zu

xv yv z v

 
  

 
  =

∆u0 ∆v0

∆u1 ∆v1

 
  

 
  

−1 ∆x0 ∆y0 ∆z0

∆x1 ∆y1 ∆z1

 
  

 
  

This requires less than half the amount of computation, since inversion or LU
decomposition of a 2x2 matrix is less than half the work of a 3x3 matrix.
This works fine for triangles, but it is sometimes desired to estimate tangents for a
polygon with more than 3 sides. We suggest repeating this computation for all sets of 3
consecutive points. This results in tangents that vary over the surface of the polygon.
Sometimes, polygons are used to represent a tessellated curved surface. In this case, the
normals are probably sampled at the vertices as well. Alternatively, there are algorithms
that estimate normals from incident faces.
The computed tangents can be corrected to be consistent with the normal by assuring that
the component of the corrected tangent in the direction of the initial tangent is equal to
the initial tangent. This is illustrated in the diagram below:

n

t 

t'
t⊥

 ′ t =
t 2

n × t
2 n × t( ) × n

The advantage to this kind of projection is that the corrected tangent has a component that
is equal to tangent of the polygon. Another vertex would also have this property, so that
when the tangents are interpolated, only the t⊥  components would be interpolated.

3.         Computing Curvature for Polygons
Polygons are flat by their nature, so they have no curvature. But if the polygon was
created from sampling points and normals from a curved surface, the normal curvature
may be estimated from the rate of change of the unit tangents.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 6



4.         Camera Model for Projecting Points
The viewing pipeline is assumed to take the following form:

q = pMVCS
where

q1× 4 = p1× 4M4 × 4V4×4C4 × 4S4× 4

specifies the sizes of the matrices involved

p = xm ym zm 1[ ]
is a point in modeling (local) space, and

q = xs ys zs ws[ ]
is a point in screen space. The matrices:

M =

m00 m01 m02 0

m10 m11 m12 0

m20 m21 m22 0

m30 m31 m32 1

 

 

 
 
 

 

 

 
 
 

maps model to world space, and takes on general values,

V =

v00 v01 v02 0

v10 v11 v12 0

v20 v21 v22 0

v30 v31 v32 1

 

 

 
 
 

 

 

 
 
 

maps world to camera space, and is orthonormal in the upper left 3x3,

C =

c00 0 0 0

0 c11 0 0

c20 c21 c22 c23

0 0 0 c33

 

 

 
 
 

 

 

 
 
 

maps camera to clipping space, and

S =

s00 0 0 0

0 s11 0 0

0 0 s22 0

s30 s31 0 1

 

 

 
 
 

 

 

 
 
 

maps clipping to screen space.

Let us call the concatenation of the matrices A:
A = MVCS

where

A =

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 

 

 
 
 

 

 

 
 
 

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 7



Then
q = pA

maps from model space to screen space.

5.         Determining the Ray
If A maps from world (or modeling) space to screen space, then A-1 maps from screen
space to world space:

xw yw zw w[ ] = i j k 1[ ]A− 1

or

x y z[ ] =

i j k 1[ ]

b00 b01 b02

b10 b11 b12

b20 b21 b22

b30 b31 b32

 

 

 
 
 

 

 

 
 
 

i j k 1[ ]

b03

b13

b23

b33

 

 

 
 
 

 

 

 
 
 

where
B = A−1.

This transforms from screen space to world space. The plane at k=0 corresponds to the
near clipping plane, and the plane at k=-∞ corresponds to the eye point1.

In this section, we find it useful to define the intermediate variables:

cx cy cz cw[ ] = i j 1[ ]
b00 b01 b02 b03

b10 b11 b12 b13

b30 b31 b32 b33

 

 

 
 

 

 

 
 

This then reduces the above transformation to:

 x y z[ ] =
b20k + c x b21k + c y b22k + cz[ ]

b23k + cw

5.1. Ray from Screen Point #1
Given a pixel (i, j), we find that the ray is given by:

1This is the result in systems that have the depth variable, k, pointing away from the viewer. In systems that
have k pointing toward the viewer, the eye point corresponds to k=+∞.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 8



x y z[ ] =
b20k + c x b21k + c y b22k + cz[ ]

b23k + cw

However, it can also be represented in the form:

x y z[ ] = axt + bx ayt + by azt + bt[ ]
by a suitable case analysis.

Case 1: b23 ≠ 0 and cw ≠ 0.
Two points on the ray can be found by substituting k = -∞ (eye point) and k = 0 (near
clipping plane):

x−∞ y−∞ z−∞[ ] =
b20

b23

b21

b23

b22

b23

 

  
 

  

x0 y0 z0[ ] = c x

cw

cy

cw

cz

cw

 

  
 

  
yielding the ray emanating from the eyepoint:

x y z[ ] =
b20 b21 b22[ ]

b23

+ t
c x cy c z[ ]

cw

−
b20 b21 b22[ ]

b23

 
 
 

 
 
 

or by reparametrizing t:, a more robust version:

x y z[ ] =
b20 b21 b22[ ]

b23

+ t cx cy cz[ ] − cw

b20 b21 b22[ ]
b23

 
 
  

 
 

Alternatively, we can generate a ray starting at the near clipping plane:

x y z[ ] =
c x cy cz[ ]

cw

+ t
b20 b21 b22[ ]

b23

−
c x c y cz[ ]

cw

 

 
 

 

 
 

or a more robust version:

x y z[ ] =
c x cy cz[ ]

cw

+ t b20 b21 b22[ ] − b23

cx cy cz[ ]
cw

 

 
 

 

 
 

This corresponds to the normal perspective camera.

 Case 2: b23 = 0 and cw  ≠ 0.
Simple division results in:

x y z[ ] =
c x cy cz[ ] + k b20 b21 b22[ ]

cw

With the parametrization:

t =
k

cw

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 9



we get:

x y z[ ] =
c x cy cz[ ]

cw

+ t b20 b21 b22[ ]

This case corresponds to a non-perspective (orthographic, oblique) camera. Since the eye
point of a non-perspective camera is at -∞, this ray starts at the near clipping plane.

Case 3: b23≠ 0 and cw  = 0.
We find two points at  k = -∞ and k = 1:

x−∞ y−∞ z−∞[ ] =
b20

b23

b21

b23

b22

b23

 

  
 

  

x1 y1 z1[ ] = b20 + c x

b23

b21 + c y

b23

b22 + cz

b23

 

  
 

  
yielding the ray:

x y z[ ] =
b20 b21 b22[ ]

b23

+ t
c x cy cz[ ]

b23

This does not correspond to any type of camera we normally have in computer graphics,
because it blows up at k=0.

5.2. Ray from Screen Point #2
We reparametrize k by the Möbius parametrization:

t =
1

b23k + cw

and find that:

k =
1− cwt

b23t

This then yields:

x y z[ ] =
b20 b21 b22[ ]

b23

+ t cx cy cz[ ] − cw

b20 b21 b22[ ]
b23

 
 
  

 
 

5.3. Ray from Screen Point #3
With the Möbius parametrization:

t =
k

b23k + cw

gives

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 10



k =
cwt

1− b23t
and

x y z[ ] =
c x cy cz[ ]

cw

+ t b20 b21 b22[ ] − b23

cx cy cz[ ]
cw

 

 
 

 

 
 

5.4. Ray from World Space Point
Again, we use the A-1 matrix, where A-1 maps from screen space to world space:

xw yw zw w[ ] = i j k 1[ ]A− 1

Here, we find that the world space points are given by:

x y z[ ] =
b00i + b10 j + b20k + b30 b01i + b11j + b21k + b31 b02i + b12 j + b22k + b32[ ]

b03i + b13j + b23k + b33

where
B = A−1.

We already have a point on the ray; the direction may be found by taking the tangent with
respect to k:

∂ x, y, z( )
∂k

=
1

w
b20 − b23x b21 − b23y b22 − b23z[ ]

where the bij’s are the elements of the A-1 matrix, w is the [common] denominator, and
we have made use of the quotient rule for derivatives.

Scaling by the common denominator (w), we arrive at:

x y z[ ] = x0 y0 z0[ ] + t b20 b21 b22[ ] − b23 x0 y0 z0[ ]( )

where x0 , y0, z0( )  is the given world space point.

6.         Determining the Ray Wavefront
The ray wavefront is an enhancement of the ray, in that it also carries with it vectors
corresponding to a unit step in screen x and y as well as curvature of the ray wavefront
that indicate how the ray grows with distance.

Given the ray:

x0 x1 x2[ ] =
c x cy cz[ ]

cw

+ t b20 b21 b22[ ] − b23

cx cy cz[ ]
cw

 

 
 

 

 
 

its derivatives with respect to screen coordinates are:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 11



∂ x, y, z( )
∂ i , j( ) =

1 − b23t( )
cw

b00 b01 b02

b10 b11 b12

 
  

 
  −

b03

b13

 
  

 
  

c x cy c z[ ]
cw

 
 
 

 
 
 

At the near clipping plane (t=0), the derivatives are:

J =

b00 b01 b02

b10 b11 b12

 
  

 
  −

b03

b13

 
  

 
  

cx c y cz[ ]
cw

cw

The ray normal (i.e. direction) is:

g = b20 b21 b22[ ]− b23

cx cy cz[ ]
cw

and its normalized direction is computed as:

n =
g
g

The derivatives of this ray direction with respect to the pixel coordinates are:

∂n
∂ i, j( ) =

g
∂g

∂ i, j( ) −
∂ g

∂ i, j( ) g

g
2 =

∂g
∂ i, j( ) −

∂ g
∂ i , j( ) n

g
The derivative of the numerator is:

∂g
∂ i, j( ) =

−b23

cw

b00 b01 b02

b10 b11 b12

 
  

 
  −

b03

b13

 
  

 
  

c x cy c z[ ]
cw

 
 
 

 
 
 

= −b23J

and that of the denominator is:

∂ g
∂ i, j( ) =

∂
∂ i, j( ) ggT( )

1

2 =
1

2
ggT( )− 1

2
∂

∂ i, j( ) ggT( ) =
1

2 g
∂

∂ i , j( ) ggT( )
where

∂
∂ i, j( ) ggT( ) = g

∂gT

∂ i, j( ) +
∂g

∂ i, j( ) gT = 2
∂g

∂ i, j( ) gT = −2b23JgT

so that the derivative of the denominator is:

∂ g
∂ i, j( ) =

1

2 g
−2b23JgT( ) =−b23JnT

and the desired derivatives of the normal is:

∂n
∂ i, j( ) =

−b23J − −b23JnT( )n
g

=
b23

g
JnTn − J( )

Curvature is given as:

κ = −
dn •dt
dt • dt

Yielding:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 12



κ =
b23

g

J − JnTn{ } • J

J • J

=
b23

g
J • J − JnTn• JT

J • J

=
b23

g

1

1
 
  

 
  −

JnT • JnT( )
J • J

 
 
 

 
 
 

where the dot products are taken separately for i and j (a slight abuse of notation),
resulting in:

κ i =
b23

g
1−

J i • n( )2

J i • J i

 
 
 

 
 
 

κ j =
b23

g
1−

J j • n( )2

J j • J j

 
 
 

 
 
 

7.         Determining the Jacobian of 2D Parametrization to Screen Space

7.1. Jacobian by the Method of Tangents
To perform anti-aliased texture-mapping, we seek the jacobian of parametrization-to-
screen space:

∂ u,v( )
∂ i, j( )

Let us represent the projective matrix A by the function a(•), which maps points from
world space to screen space:

a : R3 → R2

or

  a : x, y, z( ) a i, j( )
We will represent the parametric surface by b(•),

b : R2 → R3

mapping

  b : u,v( ) a x,y ,z( )
We first construct the composition function c(•)

c :R2 → R2

mapping

  c : u,v( ) a i, j( )
as such:

  c = a o b
or

c u,v( ) = a b u,v( )( )
From this, we evaluate the jacobian:

∂ c

∂ u,v( ) =
∂ i, j( )
∂ u,v( )

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 13



and invert this 2x2 matrix to yield the desired jacobian:

∂ u,v( )
∂ i, j( ) =

∂ i, j( )
∂ u,v( )

 

  
 

  

− 1

The quantity

∂ i, j( )
∂ u,v( )

can be computed as the product of jacobians:

∂ i, j( )
∂ u,v( ) =

∂ x , y,z( )
∂ u, v( )

x 0, y0 , z 0( )

∂ i, j( )
∂ x ,y,z( )

x0 , y0 , z 0( )

The former is trivial to compute, since it is the jacobian of tangents. The function a(•),
which maps modeling space to world space, is a simple projective transformation:

i = a00x + a10y + a20z + a30

a03x + a13y + a23z + a33

=
p0 x, y, z( )
p3 x, y,z( )

j =
a01x + a11y + a21z + a31

a03x + a13y + a23z + a33

=
p1 x, y, z( )
p3 x ,y,z( )

 ,

so its derivatives are computed by the quotient rule, e.g.

∂i

∂x
=

p3

∂p0

∂x
− p0

∂p3

∂x
p3

2 =

∂p0

∂x
− i

∂p3

∂x
p3

=
a00 − ia03

p3

etc., yielding the jacobian:

∂ i , j( )
∂ x, y, z( ) =

1

p3

a00 − ia03 a01 − ja03

a10 − ia13 a11 − ja13

a20 − ia23 a21 − ja23

 

 

 
 

 

 

 
 

This is then multiplied by the tangent jacobian,

∂ x, y, z( )
∂ u,v( ) =

xu yu zu

xv yv zv

 
  

 
  

to yield a 2x2 matrix that is the inverse of the desired jacobian:

∂ i, j( )
∂ u,v( ) =

1

p3

xu yu zu

x v yv z v

 
  

 
  

a00 − ia03 a01 − ja03

a10 − ia13 a11 − ja13

a20 − ia23 a21 − ja23

 

 

 
 

 

 

 
 

By inverting this, we find the desired result as:

∂ u,v( )
∂ i, j( ) = p3  

xu yu zu

x v yv z v

 
  

 
  

a00 − ia03 a01 − ja03

a10 − ia13 a11 − ja13

a20 − ia23 a21 − ja23

 

 

 
 

 

 

 
 

 

 
 

  

 

 
 

  

−1

7.1.1. Separation of the Screen Map

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 14



Suppose that the screen mapping is separated from the rest of the transformation, or
maybe an additional screen mapping is applied. In this case, we apply another function:

  d o a o b
where d(•) is the new screen mapping. This can be represented by a matrix similar to S:

 D =

d00 0 0 0

0 d11 0 0

0 0 d22 0

d30 d31 0 1

 

 

 
 
 

 

 

 
 
 

The concatenation of jacobians is:

∂ i, j( )
∂ u,v( ) =

∂ x , y,z( )
∂ u, v( )

x 0, y0 , z 0( )

∂ k,l( )
∂ x ,y,z( )

x0 , y0 , z 0( )

∂ i, j( )
∂ k,l( )

where (k,l) is an intermediate 2-D coordinate system.
The last screen jacobian is:

∂ i , j( )
∂ k ,l( ) =

d00 0

0 d11

 
  

 
  

and its inverse is:

∂ k ,l( )
∂ i , j( ) =

∂ i, j( )
∂ k ,l( )

 

  
 

  

− 1

=

1
d00

0

0
1

d11

 

 

 
 

 

 

 
 

Computing the desired jacobian, we have:

∂ u,v( )
∂ i, j( ) =

∂ i, j( )
∂ u,v( )

 

  
 

  

− 1

=
∂ k,l( )
∂ u,v( )

x 0 , y 0 ,z 0( )

∂ i, j( )
∂ k ,l( )

 

 
 

 

 
 

− 1

= ∂ i, j( )
∂ k ,l( )

 

  
 

  

− 1
∂ k ,l( )
∂ u,v( )

x 0 , y 0 ,z 0( )

 

 
 

 

 
 

−1

=

1

d00

0

0
1

d11

 

 

 
 

 

 

 
 
∂ u,v( )
∂ k ,l( )

i.e. the screen mapping affects the jacobian only in the sense that the input is scaled by
the pixel resolution in each direction.
Therefore, the complete computations for the texture-to-screen jacobian, with screen
transformation filtered out, is:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 15



∂ u,v( )
∂ i, j( ) = p3  

1
d00

0

0
1
d11

 

 

 
 

 

 

 
 

 
xu yu zu

x v yv zv

 
  

 
  

a00 − ka03 a01 − la03

a10 − ka13 a11 − la13

a20 − ka23 a21 − la23

 

 

 
 

 

 

 
 

 

 
 

  

 

 
 

  

− 1

Note that (k, l) (from the intermediate coordinate system, e.g. frustum space) is used in
computation of the rightmost matrix, not (i, j) (screen space).

7.2. Jacobian from Projective Mappings
Given a projective mapping

˜ u ˜ v ˜ w [ ] = i j 1[ ]
˜ u i ˜ v i ˜ w i
˜ u j ˜ v j ˜ w j
˜ u k ˜ v k ˜ w k

 

 

 
 

 

 

 
 

mapping from screen space to projective texture space, the Euclidean coordinates may be
determined from:

u =
˜ u 
˜ w 

, v =
˜ v 
˜ w 

The jacobian matrix of (u,v) with respect to (i,j) may be determined from the quotient
rule for partial derivatives, i.e.

∂u

∂x
=

∂
∂x

˜ u 
˜ w 

 
 

 
 =

˜ w ̃  u x − ˜ u ̃  w x
˜ w 2

yielding:

J =
∂ u,v( )
∂ i, j( ) =

1
˜ w 2

˜ w ̃  u i − ˜ u ˜ w i ˜ w ̃  v i − ˜ v ̃  w i
˜ w ̃  u j − ˜ u ˜ w j ˜ w ̃  v j − ˜ v ˜ w j

 

  
 

  =
1
˜ w 

˜ u i − u ˜ w i ˜ v i − v ˜ w i
˜ u j − u ˜ w j ˜ v j − v ˜ w j

 

  
 

  
If the perspective is not all that extreme, it is possible to approximate this as:

J =
∂ u,v( )
∂ i, j( ) ≈

1
˜ w 

˜ u i ˜ v i
˜ u j ˜ v j

 

  
 

  
however, it is recommended that this not be used in general circumstances.

7.3. Jacobian from Texture-Screen Correspondences
Given a correspondence between points in texture and screen space:

u0 v0[ ] ↔ i0 j0[ ]
u1 v1[ ] ↔ i1 j1[ ]
u2 v2[ ] ↔ i2 j2[ ]

we’d like to compute the texture-to-screen jacobian matrix, so that we can do anti-
aliasing properly.
We could naïvely set up an affine transformation and compute the jacobian, but we know
that we want to use projective interpolation instead of linear interpolation, so we can do
better.
From [Heckbert-Moreton], we know that an advantageous way to interpolate texture for
scan-converting is to interpolate the parameters p/w … and 1/w linearly instead of p
linearly, and then divide the interpolated parameter p/w by the interpolated 1/w to get a
projectively-interpolated p.
So, we perform a similar “trick” by generating a projective map for:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 16



u0 / w0 v0 / w0 1/ w0[ ] ↔ i0 j0[ ]
u1 / w1 v1 / w1 1/ w1[ ] ↔ i1 j1[ ]

u2 /w2 v2 / w2 1/ w2[ ] ↔ i2 j2[ ]
where the w’s are the same as those used to divide (x,y,z) when converting from
homogeneous to Euclidean coordinates. We use familiar linear equation solution methods
to solve for the 3x3 projective mapping matrix:

u / w v/ w 1/ w[ ] = i j 1[ ]
ui vi wi

uj v j w j

uk vk wk

 

 

 
 

 

 

 
 

and then use rational derivative techniques to find the jacobian of this projective
transformation.
If there are more than 3 points, we suggest computing a projective mapping at each point,
using its two nearest neighbors.

8.         Determining the Jacobian of 3D Parametrization  to Screen Space
We need to find the projection of the pixel onto the surface and measure its size.
We do this by first finding the derivatives of world space to screen space at a point in
world space.
Given the mapping A, which takes us from world space to screen space,

il jl kl l[ ] = x y z 1[ ]A
its inverse maps from screen space to world space

xw yw zw w[ ] = il jl kl l[ ]A−1

The derivatives we desire are

∂ x, y, z( )
∂ i , j( ) =

l

w

b00 b01 b02

b10 b11 b12

 
  

 
  −

b03

b13

 
  

 
  x y z[ ] 

 
 

 
 
 

where
B = A−1

If we start out with (x,y,z,1) and transform by A to yield (il, jl, kl, l), and then transform
back with A-1 to (x,y,z,w), we should have w=1. l is given by:

l = x y z 1[ ]

a03

a13

a23

a33

 

 

 
 
 

 

 

 
 
 

This yields:

∂ x, y, z( )
∂ i , j( ) =

ti

t j

 

  
 

  = x y z 1[ ]

a03

a13

a23

a33

 

 

 
 
 

 

 

 
 
 

 

 
 

 
 

 

 
 

 
 

b00 b01 b02

b10 b11 b12

 
  

 
  −

b03

b13

 
  

 
  x y z[ ] 

 
 

 
 
 

The projection of the tangent vector ti in the direction tk onto the surface with normal n
implies

t iΠ • n = ti + αt k( )• n = 0

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 17



t

n

tk

tΠ

αtk

so that

α = −
t i • n
t k • n

yielding

t iΠ = t i −
t i • n
t k • n

t k = t i
˜ 1 −

nTt k

nt k
T

 

  
 

  

where ˜ 1  is the unit tensor of rank 2. The formula for the projection of tj is analogous.
Multiplication of the projected vectors ti and tj by the jacobian matrix

∂ u,v,w( )
∂ x, y, z( )

yields:

∂ u,v,w( )
∂ i, j( ) =

tiΠ

t jΠ

 

  
 

  
∂ u,v, w( )
∂ x ,y, z( )

9.         Determining Affine Maps
We will be primarily concerned with maps from 2-D to N-D, or 3-D to N-D, so we will
specifically derive equations for these, although the methods used can be equally applied
to affine maps from M-D to N-D.
For a 2-D to N-D affine map, we have:

  

p1 p2 K pN[ ] = i j 1[ ]
t1i t2i K tNi

t1 j t2 j K tNj

t1o t2 o K tNo

 

 

 
 

 

 

 
 

where the right matrix represents the affine map. If we have 3 such correspondences
between (p1, p2, …, pN) and (i, j), the above relation should hold for these three
simultaneously, i.e.,

  

p01 p02 K p0N

p11 p12 K p1N

p21 p22 L p2N

 

 

 
 

 

 

 
 

=
i0 j0 1

i1 j1 1

i2 j2 1

 

 

 
 

 

 

 
 

t1i t2 i K tNi

t1 j t2 j K tNj

t1o t2 o K tNo

 

 

 
 

 

 

 
 

The affine mapping matrix may then be solved for by inverting the (i,j) matrix:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 18



  

t1i t2i K tNi

t1 j t2 j K tNj

t1o t2 o K tNo

 

 

 
 

 

 

 
 

=
i0 j0 1

i1 j1 1

i2 j2 1

 

 

 
 

 

 

 
 

−1
p01 p02 K p0 N

p11 p12 K p1N

p21 p22 L p2N

 

 

 
 

 

 

 
 

For the 3-D to N-D map, the corresponding solution is:

  

t1i t2i K tNi

t1 j t2 j K tNj

t1k t2k K tNk

t1o t2 o K tNo

 

 

 
 
 

 

 

 
 
 

=

i0 j0 k0 1

i1 j1 k1 1

i2 j2 k2 1

i3 j3 k3 1

 

 

 
 
 

 

 

 
 
 

−1 p01 p02 K p0 N

p11 p12 K p1N

p21 p22 L p2 N

p31 p32 K p3 N

 

 

 
 
 

 

 

 
 
 

which relates (i,j,k) to (p1, p2, …, pN)  as follows:

  

p1 p2 K pN[ ] = i j k 1[ ]

t1i t2i K tNi

t1 j t2 j K tNj

t1 k t2 k K tNk

t1 o t2 o K tNo

 

 

 
 
 

 

 

 
 
 

9.1. Determining the Jacobian Matrix of an Affine Map
The jacobian matrix of an affine map is a linear map that can be picked from the affine
map’s matrix representation by eliminating the latter’s last row. However, it is not
necessary to compute the entire affine transformation if only a subset (the jacobian
matrix) is desired.
For 2-D, we have:

  

∂ p1 , p2 ,K, pN( )
∂ i, j( ) =

t1 i t2 i K tNi

t1j t2 j K tNj

 

  
 

  =
∆i0 ∆j0
∆i1 ∆j1

 
  

 
  

−1 ∆p01 ∆p02 K ∆p0 N

∆p11 ∆p12 K ∆p1 N

 
  

 
  

and for 3-D we have:

  

∂ p1 , p2 ,K, pN( )
∂ i, j, k( ) =

t1 i t2 i K tNi

t1j t2 j K tNj

t1k t2 k K tNk

 

 

 
 

 

 

 
 

=
∆i0 ∆j0 ∆k0

∆i1 ∆j1 ∆k1

∆i2 ∆j2 ∆k2

 

 

 
 

 

 

 
 

−1
∆p01 ∆p02 K ∆p0 N

∆p11 ∆p12 K ∆p1 N

∆p21 ∆p22 K ∆p2N

 

 

 
 

 

 

 
 

These equations use the inverse of a matrix of order one less than that required for an
affine map.

10.       Determining Projective Mappings

10.1. 2D-2D Projective Mapping from Screen Space Correspondence
From [Heckbert89a] , we can compute the projective mapping between a unit square and an
arbitrary quadrilateral in (x,y). This is given by the projective frame:

Rprojective =
x1 − x0 + gx1 y1 − y0 + gy1 g

x3 − x0 + hx3 y3 − y0 + hy3 h

x0 y0 1

 

 

 
 

 

 

 
 

where

[Heckbert89a] Heckbert, Paul, Fundamentals of Texture Mapping and Image Warping, master’s thesis,
Department of Electrical Engineering and Computer Science, University of California, Berkeley, 1989.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 19



g =

x∑ ∆x32

y∑ ∆y32

∆x12 ∆x32

∆y12 ∆y32

, h =

∆x12 x∑
∆y12 y∑
∆x12 ∆x32

∆y12 ∆y32

and
∆x12 = x1 − x2 , ∆x32 = x3 − x2 , x = x0 − x1 + x2 − x3∑ ,

∆y12 = y1 − y2 , ∆y32 = y3 − y2 , y = y0 − y1 + y2 − y3∑ ,
Alternatively, we note that the computations for g and h resemble the ratio of two cross
products:

g =
∆01 × ∆32

∆12 × ∆32

, h =
∆12 × ∆03

∆12 × ∆32

where
∆ 01 = p0 − p1, ∆ 03 = p0 − p3 , ∆12 = p1 − p2, ∆32 = p3 − p2

If x = 0 and  y = 0∑∑ , the (x,y) quadrilateral is a parallelogram, and the matrix
reduces to an affine matrix:

Raffine =
x1 − x0 y1 − y0 0

x3 − x0 y3 − y0 0

x0 y0 1

 

 

 
 

 

 

 
 

These 3x3 matrices represent a projective mapping from texture to screen space as:
x y q[ ] = u v 1[ ]R

We can do a similar sort of mapping from a unit square to an arbitrary quadrilateral in
(u,v).

(x0, y0, u0, v0)

(x1, y1,u1,v1)

(x2, y2, u2, v2)

(x3, y3, u3, v3)

If we call this mapping Ru and the previous mapping Rx, then we can compute a
combined mapping from (x,y) to unit square to (u,v) as:

x y q[ ] = s t 1[ ]Rx

u v w[ ] = s t 1[ ]Ru

u v w[ ] = x y 1[ ]R x
adjRu = x y 1[ ]R

or
R = Rx

adjRu .

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 20



10.2. 2D-3D Projective Mapping from World Space Correspondence
We can compute the projective mapping matrix from 3 points R by Gaussian elimination:

x0 y0 z0

x1 y1 z1

x2 y2 z2

 

 

 
 

 

 

 
 

=
u0 v0 1

u1 v1 1

u2 v2 1

 

 

 
 

 

 

 
 

r00 r01 r02

r10 r11 r12

r20 r21 r22

 

 

 
 

 

 

 
 

We will later embed this into a 3x4 matrix as follows:

x0 y0 z0 1

x1 y1 z1 1

x2 y2 z2 1

 

 

 
 

 

 

 
 

=
u0 v0 1

u1 v1 1

u2 v2 1

 

 

 
 

 

 

 
 

r00 r01 r02 0

r10 r11 r12 0

r20 r21 r22 1

 

 

 
 

 

 

 
 

With 4 points, we compute a projective correspondence between (x,y,z) and a unit square.
We then concatenate that with a mapping from the unit square to the given (u,v)’s as in
the previous section.
The projective mapping from four coplanar points in (x,y,z) to the unit square is given by:

x1 − x0 + gx1 y1 − y0 + gy1 z1 − z0 + gz1 g

x3 − x0 + hx3 y3 − y0 + hy3 z3 − z0 + hz3 h

x0 y0 z0 1

 

 

 
 

 

 

 
 

where

g =
d − sn

rn + sn − d
, h =

d − rn
rn + sn − d

rn =
d12 d13

d32 d33

, sn =
d11 d12

d13 d32

, d =
d11 d13

d13 d33

d11 = v1 • v1 , d12 = v1 •v2 , d13 = v1 • v3 , d32 = v3 • v2

v1 = x1 − x0 y1 − y0 z1 − z0[ ]
v2 = x2 − x0 y2 − y0 z2 − z0[ ]
v3 = x3 − x0 y3 − y0 z3 − z0[ ]

We can also generalize our 2D results to 3D, yielding an alternate expression for g and h:

g =
∆01 × ∆32( ) • ∆01 × ∆03( )
∆12 × ∆32( ) • ∆01 × ∆03( ) , h =

∆12 × ∆03( ) • ∆01 × ∆03( )
∆12 ×∆ 32( ) • ∆01 × ∆03( )

where we have chosen ∆ 01 ×∆ 03  as the quadrilateral normal, to give identical results as
the previous expression. Another equally valid expression uses ∆12 ×∆ 32 as the
quadrilateral normal, and results in the slightly simpler expression:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 21



g =
∆01 × ∆32( ) • ∆12 × ∆32( )

∆12 × ∆32

2 , h =
∆12 ×∆ 03( )• ∆12 × ∆32( )

∆12 × ∆32

2

In the graphics pipeline, homogeneous vectors are transformed by modeling (M), viewing
(V), clipping (C), and screen-mapping (S) matrices, whose concatenation is represented
by the matrix A.  The mapping from texture to screen coordinates is then:

  
x' = xMVCS

A
1 2 4 3 4 = uRMVCS

A
1 2 4 3 4 

If we then toss out the resultant third component with the matrix P:

P =

1 0 0

0 1 0

0 0 0

0 0 1

 

 

 
 
 

 

 

 
 
 

we have

  
′ ′ x = xMVCS

A
1 2 4 3 4 P = uRMVCSP

B
1 2 4 3 4 = uB

If we then toss out the composite transformation is:

  
′ ′ x = i j h[ ] = u

1x3
{ R

3x 4
{ A

4 x 4
{ P

4x 3
{ = u v w[ ]B

where

B =
b00 b01 b02

b10 b11 b12

b20 b21 b22

 

 

 
 

 

 

 
 

This is a projective mapping that takes parametric space to screen space. Its inverse is
more useful for texture mapping, because it takes screen space to parametric space.
However, since B specifies a projective mapping, its adjoint can be used instead of the
inverse [PENNA]. In fact, the adjoint is preferable, because it always exists, whereas the
inverse does not always exist. The computation of the adjoint is relatively simple:

Badj =
˜ u x ˜ v x ˜ w x
˜ u y ˜ v y ˜ w y
˜ u h ˜ v h ˜ w h

 

 

 
 

 

 

 
 

=
b22b11 − b12b21 b02b21 − b22b01 b12b01 − b02b11

b12b20 − b10b22 b22b00 − b02b20 b10b02 − b12b00

b10b21 − b20b11 b20b01 − b00b21 b00b11 − b10b01

 

 

 
 

 

 

 
 

Parametric coordinates may then be obtained from screen coordinates from first
calculating:

˜ u ˜ v ˜ w [ ] = i j 1[ ]Badj

and then dividing by w:

u =
˜ u 
˜ w 

, v =
˜ v 
˜ w 

10.3. 3D-3D Projective Mappings
We desire to find the 4x4 projective transformation that maps the unit cube to a frustum,
as found in a camera specification.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 22



p0

p1

p2

p3

p4

Assuming that it has the form:

R =

x1 − x0 + fx1 y1 − y0 + fy1 z1 − z0 + fz1 f

x2 − x0 + gx2 y2 − y0 + gy2 z2 − z0 + gz2 g

x3 − x0 + hx3 y3 − y0 + gy3 z3 − z0 + hz3 h

x0 y0 z0 1

 

 

 
 
 

 

 

 
 
 

we find that f, g, and h are given by solutions to the equation:

x4 − x1 x4 − x2 x4 − x3

y4 − y1 y4 − y2 y4 − y3

z4 − z1 z4 − z2 z4 − z3

 

 

 
 

 

 

 
 

f

g

h

 

 

 
 

 

 

 
 

=
x1 + x2 + x3 − x4 − 2x0

y1 + y2 + y3 − y4 − 2y0

z1 + z2 + z3 − z4 − 2z0

 

 

 
 

 

 

 
 

10.4. Determining the Jacobian Matrix of a Projective Map
In order to find the jacobian matrix for a projective map, we invoke the quotient rule for
derivatives.

11.       Functional Parametrization
We now address the issue of applying a parametrization (or reparametrization) to a
surface by means of a function. In the purely general case, we have

u,v( ) = f N( )
where N is the neighborhood of a point, and contains:
• position
• normal
• tangents
• [other] parametrizations, etc.

When the parametrization is a function only of the normal, then we have [a variant of]
reflection-mapping.
First, we consider when the parametrization is a function only of the position.

11.1. Parametrization as a Function of Position
Here, we have:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 23



u,v( ) = f x,y ,z( )
Some obvious candidates are projection of the parametrization of a circumscribing
cylinder or sphere onto the object. The problem we address here is how to determine the
tangent vectors. We will assume that we know the normal at each point.
We can compute the jacobian

∂ u,v( )
∂ x, y, z( ) =

ux vx

uy vy

uz vz

 

 

 
 

 

 

 
 

but what we want is sort of the inverse of that, namely:

∂ x ,y, z( )
∂ u,v( ) =

xu yu zu

xv yv zv

 
  

 
  

We introduce another component into the function so that the jacobian is square and can
be inverted. If we choose a component that it is collinear with the normal, then if we
invert the jacobian, the resultant u and v derivatives are the desired tangents.
For cylindrical and spherical projections, one such suitable value is the normal distance
from the center of projection:

u,v,n( ) = f x,y ,z( )
This is illustrated in the diagram below for a cylindrical projection:

n

We choose a class of functions that have the normalized normal as its gradient.

From the jacobian:

∂ u,v,n( )
∂ x, y, z( ) =

ux vx nx

uy vy n y

uz v z nz

 

 

 
 

 

 

 
 

we compute its inverse:

∂ x, y, z( )
∂ u,v,n( ) =

xu yu zu

xv yv zv

xn yn zn

 

 

 
 

 

 

 
 

=
ux v x nx

uy vy ny

uz vz nz

 

 

 
 

 

 

 
 

−1

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 24



Note that the top row is the derivative of (x,y,z) with respect to u, holding v and n
constant. The insight into this is that when n is constant (and equal to zero), we are in the
tangent plane.
This allows us to now toss away the derivatives of n, yielding the tangents w.r.t. u and v:

∂ x, y, z( )
∂ u,v( ) =

xu yu zu

xv yv zv

 
  

 
  

11.2. Cylindrical Mapping
Without loss of generality, we assume that the origin is the center of projection.

v

u

x

y

z

Here, the projection equations are given by:
u = 1− z

v = atan2 y ,x( ) = tan− 1 y

x
 
 

 
 

which has the jacobian matrix2:

∂ u,v( )
∂ x, y, z( ) =

0 − y
x2 + y2

0
x

x2 + y2

−1 0

 

 

 
 
 
 

 

 

 
 
 
 

11.3. Spherical Mapping
The origin of the sphere is the center of projection:

u
v

2This was computed in Mathematica™ with Outer[D, {1-z, ArcTan[y/x]}, {x, y, z}] and transposed.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 25



u = − atan2 z, x 2 + y2( ) = tan−1 z

x2 + y2

 

 
 

 

 
 

v = atan2 y ,x( ) = tan−1 y

x
 
 

 
 

whose jacobian matrix is3:

∂ u,v( )
∂ x, y, z( ) =

− xz

x2 + y2 x2 + y2 + z 2( )
− y

x 2 + y2

−
yz

x2 + y2 x2 + y2 + z 2( )
x

x2 + y2

x2 + y2

x2 + y2 + z 2( ) 0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

11.4. Cube Mapping
Here, we project the surface point onto one of the eight cube faces. In other words, the
first part of the parametrization is to determine which of the 8 pyramids a particular point
belongs to.

y

x

z

In the above diagram, suppose we use the function

u =
x

2z
+

1

2
, v =

y

2z
+

1

2

for the left face. This gives the jacobian4:

∂ u,v( )
∂ x, y, z( ) =

1

2z
0

0
1

2z

− x
2z2

− y
2z2

 

 

 
 
 
 

 

 

 
 
 
 

The other faces would have different but similar parametrizations and jacobians.

3Likewise, Mathematica gives this with Outer[D, {ArcTan[z/Sqrt[x^2+y^2]], ArcTan[y/x]}, {x, y, z}]
and transposition.
4Mathematica: Outer[D, {(x/(2 z))+(1/2), (y/(2 z))+(1/2)}, {x, y, z}] transposed.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 26



11.5. Planar Mapping
This is a planar projection, such as:

u =
x

2
+

1

2
, v =

y

2
+

1

2

which has the jacobian:

∂ u,v( )
∂ x, y, z( ) =

1

2
0

0
1

2
0 0

 

 

 
 
 
 

 

 

 
 
 
 

12.       Wavefront Tracing
[Mitchell and Hanrahan] and [Glassner] give the equations for the propagation of a ray as
it interacts with a  surface.

n(i) n(r)

n(t)

κ(t)

κ(r)κ(i)

θ(i) θ(r)

θ(t)

η1

η2

n(s)

κ(s)

The reflected ray is given by:

n r( ) = n i( ) + 2cos θin
s( )

= n i( ) − 2 n i( ) • n s( )( )n s( )

and the transmitted (refracted) ray is given by:

n t( ) = ηn i( ) + γn s( )

where

γ = η cosθ i − 1+ η2 cos2 θi − 1[ ]
= η n i( ) • n s( )( ) + 1 +η2 n i( ) • n s( )( )2

− 1[ ]
October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 27



[Mitchell and Hanrahan] extend the results for rays to propagating wavefronts. A
wavefront is represented by an orthonormal frame and two principal curvatures:

u

nv

κu

κv

The wavefront propagates in a direction n, and has two principal directions u and v, each
with a curvature κu and κv.
For an orthographic camera, the curvature of the wavefront is zero in all directions at all
distances:

κ = 0

For a projective camera, the curvature in all directions is constant at a given distance:

κ = −
1

d

Wavefront propagation by transfer through free space is given by:

′ κ u =
κ u

1 − dκu

′ κ v =
κ v

1 − dκ v

where d is the propagation distance of the wavefront.

Reflection and refraction are more complicated. First we compute a new reference frame,
and compute the wavefront curvatures in this new frame. The direction

′ u =
n i( ) × n s( )

n i( ) × n s( )

is tangent to both the incident wavefront and the surface. Of course, the denominator goes
to zero if the incident wavefront and the surface normal are collinear, so in this case, any
vector in the common tangent plane may be used as the u´ vector. Although not necessary
at this point, the vector v´ is given by:

′ v = u × ′ u ( ) × v + u • ′ u ( )v = u • ′ u ( )v − v • ′ u ( )u
We can find the curvatures of the wavefront in this direction with Euler’s formula:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 28



κ ′ u = κu cos2θ + κ v sin2θ

κ ′ v = κu sin2 θ +κ vcos2 θ

κ ′ u ′ v = κ u − κ v( )cosθ sinθ

where the trigonometric terms can be computed with:

cosθ = ′ u •u

sinθ = ′ u • v

We next need to determine the curvatures of the surface in this new frame. For a
parametric surface, we have the parametric tangents xu and xv. We can determine the
coordinates of the new frame in the surface’s parametric coordinates with:

′ ′ u = ′ u • xu ′ u • xv[ ] xu • xu xu • xv

xv • xu x v • xv

 
  

 
  

−1

= ′ u xu
T x v

T[ ] xu • xu xu • x v

x v • xu x v • x v

 
  

 
  

−1

where u´´ are the 2-coordinates of the u´ vector in the surface’s parametric coordinates.
The inverted matrix on the right is necessary because the surface’s parametric coordinates
are not orthonormal. An orthogonal vector to u´ in the surface tangent plane is

The curvature in the u´´ direction is given by:

κ ′ ′ u = ′ ′ u D ′ ′ u T

where D is the curvature tensor of the parametric surface. The metric tensor is not needed
because the u´´ vector is a unit vector, as measured in world space.

We need to compute the κv and κuv curvatures as well, in this new frame. A vector
orthogonal to the u´ vector in the surface tangent plane is

′ u × n s( )

so that we can transform the curvature tensor as:

′ D = UDUT

where

U =
′ u 

′ u × n s( )
 
  

 
  xu

T x v
T[ ] xu • xu xu • x v

x v • xu x v • x v

 
  

 
  

−1

We now have enough information to determine the curvatures in the new frame. The
curvatures for reflection are:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 29



κu
r( ) =κu

i( ) + 2cosθiκ u
s( )

κuv
r( ) = −κuv

i( ) − 2κuv
s( )

κ v
r( ) = κ v

i( ) + 2/cosθ i( )κ v
s( )

and those for transmission (refraction) are (Mitchell-Hanrahan have an error here):

κu
t( ) = ηκ u

i( ) + γκu
s( )

κuv
t( ) = η

cosθ i

cosθ t

κuv
i( ) +

γ
cosθt

κuv
s( )

κ v
t( ) = η

cos2 θ i

cos2θt

κ v
i( ) +

γ
cos2 θt

κ v
s( )

where the cosines are given by:

cosθi = −n i( ) • n s( )

cosθt =−n t( ) • n s( )

All that is left is to find the principal axes and principal curvatures.
Eigenvalue analysis yields:

κ1 =
κ u + κ v + 4κ uv

2 + κ u −κ v( )2

2

κ2 =
κ u + κ v − 4κ uv

2 + κ u −κ v( )2

2

w1 = −2κuv

κ u − κ v − 4κuv
2 + κ u − κ v( )2

1
 

 
 

 

 
 

w 2 = −2κuv

κu −κ v + 4κuv
2 + κu −κ v( )2

1
 

 
 

 

 
 

if κuv is zero, then we already have the principal axes and curvatures, otherwise a rotation
of up to 45° is performed. The new axes are given by w1 and w2.

12.1. Anti-Aliasing Specular Reflections and Refractions using Wavefront
Tracing
We want to trace the shape of a pixel throughout the system as it reflects from and
refracts through surfaces. In short, the size of a pixel varies inversely with the curvature.
At the last surface, the pixel is projected onto the surface and appropriate anti-aliasing is
done.
(more detail…).
First, we need to evaluate the ray wavefront on the surface. Recall that it is given by:

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 30



x y z[ ] = x0 y0 z0[ ] + t b20 b21 b22[ ] − b23 x0 y0 z0[ ]( )
At the point (x0, y0, z0), (i.e. t=0), the derivatives w.r.t. i and j are

J = x0 y0 z0 1[ ]

a03

a13

a23

a33

 

 

 
 
 

 

 

 
 
 

 

 
 

 
 

 

 
 

 
 

b00 b01 b02

b10 b11 b12

 
  

 
  −

b03

b13

 
  

 
  x0 y0 z0[ ] 

 
 

 
 
 

The normal of the ray is given by:

ˆ n =
n
n

where
n = b20 b21 b22[ ] − b23 x0 y0 z0[ ]

and the curvatures in the i and j directions are given by:

κ i =
b23

n
1−

J i • ˆ n ( )2

J i • J i

 
 
 

 
 
 

κ j =
b23

n
1−

J j • ˆ n ( )2

J j • J j

 
 
 

 
 
 

13.       Appendix: Norms for Jacobian Matrices
Here is a study of several norms for jacobian matrices. Note that these formulations are
for jacobian matrices that are expected to be multiplied by row vectors, not column
vectors as found in textbooks.

aij[ ]
1

= max
i

aij
j

∑

aij[ ]
2

= max
i

λ i ; aij[ ]
2 x 2 2

=
a00 + a11 + a00 + a11( )2 − 4 a00a11 − a01a10( )

2

aij[ ]
Heckbert

= max
i

aij
2

j
∑

aij[ ]
∞

= max
j

aij
i

∑
The L1 norm is the maximum of the sums of the absolute value of the rows (max L1
norm of rows).
The L∞ norm is the maximum of the sums of the absolute value of the columns. (max L1
norm of columns)
The L2 norm is the maximum eigenvalue of the matrix.
The LHeckbert norm is the maximum of the Euclidean norms of the rows (max L2 norm
of the rows).

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 31



From outer to inner:

L1

L∞

LHeckbert

L2

From outer to inner:

L1

L∞

LHeckbert

L2

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 32



From outer to inner:

L1,  L∞ ,  LHeckbert

L2

From outer to inner:

L1,  L∞

LHeckbert

L2

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 33



From these pictures, we see that the L1 norm is the most conservative, in that it always
yields the biggest circle. The L∞ norm is not far from it. Both of them always
circumscribe the ellipse. They are both quite anisotropic in that the resultant diameter is
larger for an inclined ellipse than an upright (or flat) ellipse.
The LHeckbert norm solves the anisotropy problem, and results in a diameter that is very
close to the length of the major axis.
The L2 norm is also relatively isotropic, and it strives to achieve a balance between
aliasing and blurriness. The area inside the ellipse and outside the circle represents
aliasing; the area inside the circle and outside the ellipse represents blurriness.

October 15, 1993 The Differential Geometry of Texture-Mapping and Shading 34


