
Filters for Common Resampling Tasks

Ken Turkowski, Apple Computer

Continuous, Sampled, and Discrete Signals
Signals or functions that are continuous are defined at all values on an interval.  When these are
then sampled, they are defined only at a given set of points, regularly spaced or not.  When the val-
ues at these sample points are then quantized to a certain number of bits, they are called discrete.
A sampled function may or may not be discrete.
In computer graphics, we deal with all three of these representations, at least in our models of
computation.  A function such as sin(x) is considered to be continuous.  A sequence of floating-
point values may be considered to represent a sampled function, whereas a sequence of integers
(especially 8-bit integers) represent a discrete function.

Interpolation and Decimation
Even though a signal is sampled, we may have certain rules about inferring the values between the
sample points.  The most common assumption made in signal processing is that the signal is
bandlimited to an extent consistent with the sampling rate, i.e. that the values change smoothly be-
tween samples.  The Sampling Theorem guarantees that a continuous signal can be reconstructed
perfectly from its samples if the signal was appropriately bandlimited prior to sampling
[Oppenheim 75].  Practically speaking, signals are never perfectly bandlimited, nor can we construct
a perfect reconstruction filter, but we can get as close as we want in a prescribed manner.
We often want to change from one sampling rate to another.  The process of representing a signal
with more samples is called interpolation, whereas representing it with less is called decimation.
Examples of interpolation are: zooming up on an image, correcting for non-square pixels, and
converting an image from 72 dpi to 300 dpi to feed a high resolution output device.  Applications
of decimation are: reducing the jaggies on an supersampled image, and correcting for non-square
pixels.

Choices of Filters
Several types of filters are more
popular than others: box, tent,
Gaussian, and sinc.  To the right,
we show the frequency response
of a few of the continuous ver-
sions of these filters.  The ideal
filter would have a gain of 0 dB
between frequencies of 0 and 1
(the passband), and -∞ beyond 1
(the stopband).  The rolloff in
the passband is responsible for
blurriness, and the leakage in the
stopband is responsible for
aliasing (jaggies).  One generally
has to make the tradeoff between
sharpness and aliasing in choosing a filter.
We will be sampling some of these filters, specifically for use in interpolation and decimation ra-
tios of integer amounts, such as 2, 3 and 4.
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Box
The box filter for interpolation merely picks the closest value.  For
decimation, it is simply an average of the input samples.  With an
even number of samples, the filter produces an output that is situated
between two input samples (half phase), whereas with an odd num-
ber, it is situated at the same location as the middle sample (zero
phase).  With other filters, you can select the phase of the filter, but
not so for the box filter.  To the right, we show the half phase box
filter for decimation by 2.  Higher decimation ratio filters just have
coefficients with weights that sum to one.

Tent
The tent filter is a generalization of linear interpolation, and is so when interpolating.  Unlike the
box filter, this can accommodate arbitrary filter phases; we show the zero phase and half phase fil-
ter for decimation by two, three and four below:

Decimation by a factor of two with the Tent function

Decimation by a factor of three with the Tent function
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Decimation by a factor of four with the Tent function
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Gaussian
The Gaussian function is popular for its many elegant analytical properties.  It is entirely positive,
it is the limit of probability density functions, and it is its own Fourier transform.  Here, we give
rationale for choosing an appropriate width, or variance, for filtering in graphics.
We choose Gaussian filters here whose variances have physical and computational significance. 

 
The first is the narrowest that we would probably ever want to use, and has a half-amplitude width
of , i.e. it has the value  a distance  from its center.  Its value gets negligible  samples away
from the center, so it can be considered to have a support of 3.
Energy, in general terms, is the square of the magnitude.  If the eye is more linear in energy than in
magnitude, then a more appropriate Gaussian might be one in which the square of the magnitude is

 at a distance  from the center, or that the magnitude itself has a value of  at that point.  This
is a wider Gaussian than the first, and its magnitude doesn't become negligible until 2 samples
from the center, so that it may be considered a filter with support  4.
In the previous frequency plot, we compare the box, tent, and these two Gaussians.  The box filter
captures more of the passband (freq < 1) than the others, but it also lets through more of the stop-
band (freq > 1).  It is the leakage in the stopband that is responsible for aliasing artifacts, or “jag-
gies”.  The tent filter is 15 dB better at eliminating aliasing in the stopband, but does so at the ex-

pense of losing more features in the passband.  The Gaussian  filter matches the tent for a good

portion of the passband, but continues to attenuate the stopband.  The Gaussian  filter does an
even better job at attenuating the aliases, but does so at the expense of losing additional detail in
the passband.
A comparison of the tent and the narrow Gaussian in the time (space) domain will show that they
look very similar, except that the Gaussian is smooth at the peak and the base, whereas the tent has
slope discontinuities there.  It is these discontinuities that cause the ringing and ineffective alias
suppression in the stopband.
One of the side effects of our particular choices of Gaussian variance is  that many of their
coefficients at interesting locations are scaled powers of two, which makes way for faster
computation.  We will see this in the following filters, specialized for certain interpolation and dec-
imation tasks.
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Interpolation with the Gaussian  filter
Here, we give the filter coefficients for a set of filters to interpolate between two given samples:
halfway between, and a quarter of the way either side of a sample.  Notice the nice rational coeffi-
cients that are scaled powers of two.

To determine the coefficients for a filter to produce the value at any other point between two sam-
ples, we merely sample the Gaussian at a series of locations one sample apart, and normalize them
so that their sum equals one.  Even though the Gaussian is zero nowhere, we consider this filter’s
value to be negligible greater than 1.5 samples away from its center.
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Decimation by a factor of two with the Gaussian  filter

Decimation by a factor of three with the Gaussian  filter

Decimation by a factor of four with the Gaussian  filter
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Interpolation with the Gaussian  filter

This wider Gaussian becomes negligible greater than 2 samples away from the center.
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Decimation by a factor of two with the Gaussian  filter

Decimation by a factor of 3 with the Gaussian  filter

Decimation by a factor of 4 with the Gaussian  filter
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The sinc function
The sinc function is the ideal low-pass filter [Oppenheim 75]:

-
The Lanczos-windowed sinc functions

Since the sinc function never goes to zero, but
approaches it slowly, we multiply it by an ap-
propriate windowing function. The two-lobed
Lanczos-windowed sinc function is one such
windowed sinc function, and is defined as
follows:

The 3-lobed Lanczos-windowed sinc function is
defined similarly:

The Lanczos-windowed sinc function filters have been shown to be particularly useful for graphics
applications1.  We will concern ourselves here mainly with the two-lobed version, because of its
smaller kernel.

1. Turkowski, Ken and Gabriel, Steve, 1979.  Conclusions of experiments done at Ampex, comparing box,
Gaussian, truncated sinc, and several windowed sinc filters (Bartlett, cosine, Hanning, Lanczos) for dec-
imation and interpolation of 2-dimensional image data.  The Lanczos-windowed sinc functions offered
the best compromise in terms of reduction of aliasing, sharpness, and minimal ringing.
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Interpolation by factor of 2 with the Lanczos2 sinc function

Note that with a zero phase filter, the contributions from other than the central pixel are zero, so
that only the central pixel is used.

Decimation by factor of 2 with the Lanczos2 sinc function

The zero phase filter has coefficients that are nearly rational.  If the negative coefficients are scaled
so that they are equal to -1, then the remaining coefficients are 9 and 15.7024.  This inspired a
search for such filters with rational coefficients.  This yielded the following two zero phase filters:
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Decimation by a factor of 3 with the Lanczos2 sinc function

Decimation by a factor of 4 with the Lanczos2 sinc function
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Comparative Frequency Responses
Filters are evaluated on their ability to retain detail in the passband (sharpness is valued more than
blurriness) and to eliminate aliasing in the stopband (smoothness is valued more than jagginess).
The frequency response of a sampled filter is quite different than the continuous one it was derived
from.  Instead of taking the Fourier transform as with continuous filters, we take the z-transform
and sample on the unit circle.
By the way, one bit corresponds to about 6 dB, so that attenuation beyond 48 dB is irrelevant when
working with 8-bit pixels.

Frequency response of the zero phase filters for decimation by 2

Frequency response of the half phase filters for decimation by 2

In the above diagrams, we see that the filter derived from the Gaussian 1/2 filter doesn’t perform
as well as the one derived from the tent, although we know that in the continuous case, the Gauss-
ian is much better.  What happened?  We sampled the filter functions, that’s what happened.  In the
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process, we changed the characteristics of the filter.  In fact, there are several continuous filters
that give rise to the same sampled filters.  The labels on each of the filters are actually misnomers,
since the sampled filters are not the same as the continuous ones.
The box filter seems to retain a large portion of the passband, but lets through a tremendous
amount of energy in the stopband, resulting in noticeable aliasing.  The Lanczos filters keeps more
of the passband than the others (except for maybe the box), and they cut off more of the stopband
(except for maybe the Gaussian 1/√2), with the Lanczos3 filter coming closest to the ideal filter
shape of all the filters evaluated.  The Gaussian 1/√2 filter is competitive with the Lanczos3 for
stopband response, but does so at the expense of excessive attenuation on the passband.

Frequency response of the Gaussian  filter for several decimation ratios

The cutoff frequencies are 0.5 for the ÷2 filter, 0.333 for the ÷3, 0.25 for the ÷4.  Note that the zero
phase and the half phase filters for decimation by 2 diverge, whereas the higher-decimation filters
do not.

Frequency response of the Gaussian  filter for several decimation ratios
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Frequency response of the Lanczos2 sinc functions
Here we show the responses of the decimate-by-2 filters related to the Lanczos2 filter.

Note that the Gabriel decimator lets more of the passband through, and has a sharper cutoff in the
stopband, but also bounces back in the stopband at a higher level than that of the Lanczos2.  The
Turkowski decimator does not bounce back, though, and eliminates more of the highest frequen-
cies than the other two.  They all have approximately the same passband response and aliasing en-
ergy, but the aliasing energy is distributed differently throughout the spectrum, so they can be con-
sidered about equivalent.

Frequency response of the Lanczos2 sinc functions for several decimation ratios
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